BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 34509460)

  • 1. Biological sex differences in afferent-mediated inhibition of motor responses evoked by TMS.
    Turco CV; Rehsi RS; Locke MB; Nelson AJ
    Brain Res; 2021 Nov; 1771():147657. PubMed ID: 34509460
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modulation of long-latency afferent inhibition by the amplitude of sensory afferent volley.
    Turco CV; El-Sayes J; Fassett HJ; Chen R; Nelson AJ
    J Neurophysiol; 2017 Jul; 118(1):610-618. PubMed ID: 28446579
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of cutaneous and proprioceptive inputs in sensorimotor integration and plasticity occurring in the facial primary motor cortex.
    Pilurzi G; Ginatempo F; Mercante B; Cattaneo L; Pavesi G; Rothwell JC; Deriu F
    J Physiol; 2020 Feb; 598(4):839-851. PubMed ID: 31876950
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of water immersion on short- and long-latency afferent inhibition, short-interval intracortical inhibition, and intracortical facilitation.
    Sato D; Yamashiro K; Yoshida T; Onishi H; Shimoyama Y; Maruyama A
    Clin Neurophysiol; 2013 Sep; 124(9):1846-52. PubMed ID: 23688919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Short-latency afferent inhibition modulation during finger movement.
    Asmussen MJ; Jacobs MF; Lee KG; Zapallow CM; Nelson AJ
    PLoS One; 2013; 8(4):e60496. PubMed ID: 23593228
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Combined Peripheral Nerve Stimulation and Controllable Pulse Parameter Transcranial Magnetic Stimulation to Probe Sensorimotor Control and Learning.
    Graham KR; Hayes KD; Meehan SK
    J Vis Exp; 2023 Apr; (194):. PubMed ID: 37154553
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Short-latency afferent inhibition determined by the sensory afferent volley.
    Bailey AZ; Asmussen MJ; Nelson AJ
    J Neurophysiol; 2016 Aug; 116(2):637-44. PubMed ID: 27226451
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The distribution and reliability of TMS-evoked short- and long-latency afferent interactions.
    Toepp SL; Turco CV; Rehsi RS; Nelson AJ
    PLoS One; 2021; 16(12):e0260663. PubMed ID: 34905543
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interactions between short latency afferent inhibition and long interval intracortical inhibition.
    Udupa K; Ni Z; Gunraj C; Chen R
    Exp Brain Res; 2009 Nov; 199(2):177-83. PubMed ID: 19730839
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Short-and long-latency afferent inhibition of the human leg motor cortex by H-reflex subthreshold electrical stimulation at the popliteal fossa.
    Kato T; Sasaki A; Nakazawa K
    Exp Brain Res; 2023 Jan; 241(1):249-261. PubMed ID: 36481937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Acute effects of muscle vibration on sensorimotor integration.
    Lapole T; Tindel J
    Neurosci Lett; 2015 Feb; 587():46-50. PubMed ID: 25524409
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Human brain cortical correlates of short-latency afferent inhibition: a combined EEG-TMS study.
    Ferreri F; Ponzo D; Hukkanen T; Mervaala E; Könönen M; Pasqualetti P; Vecchio F; Rossini PM; Määttä S
    J Neurophysiol; 2012 Jul; 108(1):314-23. PubMed ID: 22457460
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of short-latency afferent inhibition and short-interval intracortical inhibition by test stimulus intensity and motor-evoked potential amplitude.
    Miyaguchi S; Kojima S; Sasaki R; Tamaki H; Onishi H
    Neuroreport; 2017 Dec; 28(18):1202-1207. PubMed ID: 29064955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigating the effects of dopamine on short- and long-latency afferent inhibition.
    Foglia SD; Adams FC; Ramdeo KR; Drapeau CC; Turco CV; Tarnopolsky M; Ma J; Nelson AJ
    J Physiol; 2024 May; 602(10):2253-2264. PubMed ID: 38638084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pulse Duration as Well as Current Direction Determines the Specificity of Transcranial Magnetic Stimulation of Motor Cortex during Contraction.
    Hannah R; Rothwell JC
    Brain Stimul; 2017; 10(1):106-115. PubMed ID: 28029595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Short and long latency afferent inhibition in Parkinson's disease.
    Sailer A; Molnar GF; Paradiso G; Gunraj CA; Lang AE; Chen R
    Brain; 2003 Aug; 126(Pt 8):1883-94. PubMed ID: 12805105
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The recent history of afferent stimulation modulates corticospinal excitability.
    Bonnesen MT; Fuglsang SA; Siebner HR; Christiansen L
    Neuroimage; 2022 Sep; 258():119365. PubMed ID: 35690256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modulation of short-latency afferent inhibition depends on digit and task-relevance.
    Asmussen MJ; Zapallow CM; Jacobs MF; Lee KG; Tsang P; Nelson AJ
    PLoS One; 2014; 9(8):e104807. PubMed ID: 25118700
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Hemispheric asymmetry and somatotopy of afferent inhibition in healthy humans.
    Helmich RC; Bäumer T; Siebner HR; Bloem BR; Münchau A
    Exp Brain Res; 2005 Nov; 167(2):211-9. PubMed ID: 16034577
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Reliability of transcranial magnetic stimulation measures of afferent inhibition.
    Turco CV; Pesevski A; McNicholas PD; Beaulieu LD; Nelson AJ
    Brain Res; 2019 Nov; 1723():146394. PubMed ID: 31425680
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.