BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 34509493)

  • 1. Human flavin-containing monooxygenase 1 and its long-sought hydroperoxyflavin intermediate.
    Cheropkina H; Catucci G; Marucco A; Fenoglio I; Gilardi G; Sadeghi SJ
    Biochem Pharmacol; 2021 Nov; 193():114763. PubMed ID: 34509493
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Monitoring the reductive and oxidative half-reactions of a flavin-dependent monooxygenase using stopped-flow spectrophotometry.
    Romero E; Robinson R; Sobrado P
    J Vis Exp; 2012 Mar; (61):. PubMed ID: 22453826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The oxidative half-reaction of liver microsomal FAD-containing monooxygenase.
    Beaty NB; Ballou DP
    J Biol Chem; 1981 May; 256(9):4619-25. PubMed ID: 7217103
    [TBL] [Abstract][Full Text] [Related]  

  • 4. C4a-hydroperoxyflavin formation in N-hydroxylating flavin monooxygenases is mediated by the 2'-OH of the nicotinamide ribose of NADP⁺.
    Robinson R; Badieyan S; Sobrado P
    Biochemistry; 2013 Dec; 52(51):9089-91. PubMed ID: 24321106
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Uncoupled human flavin-containing monooxygenase 3 releases superoxide radical in addition to hydrogen peroxide.
    Catucci G; Gao C; Rampolla G; Gilardi G; Sadeghi SJ
    Free Radic Biol Med; 2019 Dec; 145():250-255. PubMed ID: 31580948
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flavin-containing monooxygenase isoform specificity for the N-oxidation of tamoxifen determined by product measurement and NADPH oxidation.
    Hodgson E; Rose RL; Cao Y; Dehal SS; Kupfer D
    J Biochem Mol Toxicol; 2000; 14(2):118-20. PubMed ID: 10630426
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structure and function of a flavin-dependent S-monooxygenase from garlic (
    Valentino H; Campbell AC; Schuermann JP; Sultana N; Nam HG; LeBlanc S; Tanner JJ; Sobrado P
    J Biol Chem; 2020 Aug; 295(32):11042-11055. PubMed ID: 32527723
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Binding of methimazole and NADP(H) to human FMO3: In vitro and in silico studies.
    Gao C; Catucci G; Gilardi G; Sadeghi SJ
    Int J Biol Macromol; 2018 Oct; 118(Pt A):460-468. PubMed ID: 29959003
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The mammalian flavin-containing monooxygenases: molecular characterization and regulation of expression.
    Hines RN; Cashman JR; Philpot RM; Williams DE; Ziegler DM
    Toxicol Appl Pharmacol; 1994 Mar; 125(1):1-6. PubMed ID: 8128486
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ancestral reconstruction of mammalian FMO1 enables structural determination, revealing unique features that explain its catalytic properties.
    Bailleul G; Nicoll CR; Mascotti ML; Mattevi A; Fraaije MW
    J Biol Chem; 2021; 296():100221. PubMed ID: 33759784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of xenobiotic N- and S-oxidation by variant flavin-containing monooxygenase 1 (FMO1) enzymes.
    Furnes B; Schlenk D
    Toxicol Sci; 2004 Apr; 78(2):196-203. PubMed ID: 14976351
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Arg279 is the key regulator of coenzyme selectivity in the flavin-dependent ornithine monooxygenase SidA.
    Robinson R; Franceschini S; Fedkenheuer M; Rodriguez PJ; Ellerbrock J; Romero E; Echandi MP; Martin Del Campo JS; Sobrado P
    Biochim Biophys Acta; 2014 Apr; 1844(4):778-84. PubMed ID: 24534646
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The biochemical mechanism of auxin biosynthesis by an arabidopsis YUCCA flavin-containing monooxygenase.
    Dai X; Mashiguchi K; Chen Q; Kasahara H; Kamiya Y; Ojha S; DuBois J; Ballou D; Zhao Y
    J Biol Chem; 2013 Jan; 288(3):1448-57. PubMed ID: 23188833
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic mechanism of ornithine hydroxylase (PvdA) from Pseudomonas aeruginosa: substrate triggering of O2 addition but not flavin reduction.
    Meneely KM; Barr EW; Bollinger JM; Lamb AL
    Biochemistry; 2009 May; 48(20):4371-6. PubMed ID: 19368334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanistic studies of cyclohexanone monooxygenase: chemical properties of intermediates involved in catalysis.
    Sheng D; Ballou DP; Massey V
    Biochemistry; 2001 Sep; 40(37):11156-67. PubMed ID: 11551214
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Formation and stabilization of C4a-hydroperoxy-FAD by the Arg/Asn pair in HadA monooxygenase.
    Pimviriyakul P; Chaiyen P
    FEBS J; 2023 Jan; 290(1):176-195. PubMed ID: 35942637
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multisubstrate flavin-containing monooxygenases: applications of mechanism to specificity.
    Poulsen LL; Ziegler DM
    Chem Biol Interact; 1995 Apr; 96(1):57-73. PubMed ID: 7720105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Flavin-containing monooxygenase S-oxygenation of a series of thioureas and thiones.
    Henderson MC; Siddens LK; Krueger SK; Stevens JF; Kedzie K; Fang WK; Heidelbaugh T; Nguyen P; Chow K; Garst M; Gil D; Williams DE
    Toxicol Appl Pharmacol; 2014 Jul; 278(2):91-9. PubMed ID: 24727368
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electron transfer in flavocytochrome P450 BM3: kinetics of flavin reduction and oxidation, the role of cysteine 999, and relationships with mammalian cytochrome P450 reductase.
    Roitel O; Scrutton NS; Munro AW
    Biochemistry; 2003 Sep; 42(36):10809-21. PubMed ID: 12962506
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stabilization of C4a-hydroperoxyflavin in a two-component flavin-dependent monooxygenase is achieved through interactions at flavin N5 and C4a atoms.
    Thotsaporn K; Chenprakhon P; Sucharitakul J; Mattevi A; Chaiyen P
    J Biol Chem; 2011 Aug; 286(32):28170-80. PubMed ID: 21680741
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.