BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34509561)

  • 81. Involvement of dorsal raphe nucleus and dorsal periaqueductal gray 5-HT receptors in the modulation of mouse defensive behaviors.
    Pobbe RL; Zangrossi H; Blanchard DC; Blanchard RJ
    Eur Neuropsychopharmacol; 2011 Apr; 21(4):306-15. PubMed ID: 20570114
    [TBL] [Abstract][Full Text] [Related]  

  • 82. GABAergic Neurons in the Dorsal Raphe Nucleus that Express 5-HT3A Receptors Participate in Responses to Stress Hormones.
    Li X; Chen S; Yang H; Li X; So KF; Wang L
    Neuroscience; 2020 Aug; 441():217-225. PubMed ID: 32512137
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Neurogenetics of aggressive behavior: studies in rodents.
    Takahashi A; Miczek KA
    Curr Top Behav Neurosci; 2014; 17():3-44. PubMed ID: 24318936
    [TBL] [Abstract][Full Text] [Related]  

  • 84. GluA2-Lacking AMPA Receptors and Nitric Oxide Signaling Gate Spike-Timing-Dependent Potentiation of Glutamate Synapses in the Dorsal Raphe Nucleus.
    Haj-Dahmane S; Béïque JC; Shen RY
    eNeuro; 2017; 4(3):. PubMed ID: 28580416
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Role of 5-HT in stress, anxiety, and depression.
    Graeff FG; Guimarães FS; De Andrade TG; Deakin JF
    Pharmacol Biochem Behav; 1996 May; 54(1):129-41. PubMed ID: 8728550
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Dorsal raphé nucleus glucocorticoid receptors inhibit tph2 gene expression in male C57BL/6J mice.
    Vincent MY; Donner NC; Smith DG; Lowry CA; Jacobson L
    Neurosci Lett; 2018 Feb; 665():48-53. PubMed ID: 29174640
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Role of GABAA receptors in dorsal raphe nucleus in stress-induced reinstatement of morphine-conditioned place preference in rats.
    Li C; Staub DR; Kirby LG
    Psychopharmacology (Berl); 2013 Dec; 230(4):537-45. PubMed ID: 23812764
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Effects of sex, age, and aggressive traits in man on brain serotonin 5-HT1A receptor binding potential measured by PET using [C-11]WAY-100635.
    Parsey RV; Oquendo MA; Simpson NR; Ogden RT; Van Heertum R; Arango V; Mann JJ
    Brain Res; 2002 Nov; 954(2):173-82. PubMed ID: 12414100
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Modulation of serotonergic projection from dorsal raphe nucleus to basolateral amygdala on sleep-waking cycle of rats.
    Gao J; Zhang JX; Xu TL
    Brain Res; 2002 Jul; 945(1):60-70. PubMed ID: 12113952
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Serotonergic neurotransmission in the dorsal raphe nucleus recruits in situ 5-HT(2A/2C) receptors to modulate the post-ictal antinociception.
    Freitas RL; Bassi GS; de Oliveira AM; Coimbra NC
    Exp Neurol; 2008 Oct; 213(2):410-8. PubMed ID: 18671968
    [TBL] [Abstract][Full Text] [Related]  

  • 91. MC
    Bruschetta G; Jin S; Liu ZW; Kim JD; Diano S
    Cell Rep; 2020 Oct; 33(2):108267. PubMed ID: 33053350
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Viral vector mediated expression of mutant huntingtin in the dorsal raphe produces disease-related neuropathology but not depressive-like behaviors in wildtype mice.
    Pitzer M; Lueras J; Warden A; Weber S; McBride J
    Brain Res; 2015 May; 1608():177-90. PubMed ID: 25732261
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Influence of inhibitory and excitatory inputs on serotonin efflux differs in the dorsal and median raphe nuclei.
    Tao R; Auerbach SB
    Brain Res; 2003 Jan; 961(1):109-20. PubMed ID: 12535783
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Aniracetam enhances cortical dopamine and serotonin release via cholinergic and glutamatergic mechanisms in SHRSP.
    Shirane M; Nakamura K
    Brain Res; 2001 Oct; 916(1-2):211-21. PubMed ID: 11597608
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Localisation and stress-induced plasticity of GABAA receptor subunits within the cellular networks of the mouse dorsal raphe nucleus.
    Corteen NL; Carter JA; Rudolph U; Belelli D; Lambert JJ; Swinny JD
    Brain Struct Funct; 2015 Sep; 220(5):2739-63. PubMed ID: 24973971
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Neurochemical and anatomical identification of fast- and slow-firing neurones in the rat dorsal raphe nucleus using juxtacellular labelling methods in vivo.
    Allers KA; Sharp T
    Neuroscience; 2003; 122(1):193-204. PubMed ID: 14596860
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Inhibitory influence of GABA on central serotonergic transmission. Raphé nuclei as the neuroanatomical site of the GABAergic inhibition of cerebral serotonergic neurons.
    Nishikawa T; Scatton B
    Brain Res; 1985 Apr; 331(1):91-103. PubMed ID: 2985201
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Enhanced 5-HT1A receptor-dependent feedback control over dorsal raphe serotonin neurons in the SERT knockout mouse.
    Soiza-Reilly M; Goodfellow NM; Lambe EK; Commons KG
    Neuropharmacology; 2015 Feb; 89():185-92. PubMed ID: 25261781
    [TBL] [Abstract][Full Text] [Related]  

  • 99. GABAergic modulation of 5-HT7 receptor-mediated effects on 5-HT efflux in the guinea-pig dorsal raphe nucleus.
    Roberts C; Thomas DR; Bate ST; Kew JN
    Neuropharmacology; 2004 Jun; 46(7):935-41. PubMed ID: 15081790
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Disfunction of dorsal raphe nucleus-hippocampus serotonergic-HTR3 transmission results in anxiety phenotype of Neuroplastin 65-deficient mice.
    Cheng J; Chen L; Zheng YN; Liu J; Zhang L; Zhang XM; Huang L; Yuan QL
    Acta Pharmacol Sin; 2024 Jul; 45(7):1393-1405. PubMed ID: 38528118
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.