BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

505 related articles for article (PubMed ID: 34509667)

  • 41. Genome editing for human gene therapy.
    Meissner TB; Mandal PK; Ferreira LM; Rossi DJ; Cowan CA
    Methods Enzymol; 2014; 546():273-95. PubMed ID: 25398345
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Harnessing CRISPR/Cas9 technology in cardiovascular disease.
    Rezaei H; Khadempar S; Farahani N; Hosseingholi EZ; Hayat SMG; Sathyapalan T; Sahebkar AH
    Trends Cardiovasc Med; 2020 Feb; 30(2):93-101. PubMed ID: 30935726
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Selection-free genome editing of the sickle mutation in human adult hematopoietic stem/progenitor cells.
    DeWitt MA; Magis W; Bray NL; Wang T; Berman JR; Urbinati F; Heo SJ; Mitros T; Muñoz DP; Boffelli D; Kohn DB; Walters MC; Carroll D; Martin DI; Corn JE
    Sci Transl Med; 2016 Oct; 8(360):360ra134. PubMed ID: 27733558
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The multiplexed CRISPR targeting platforms.
    Cao J; Xiao Q; Yan Q
    Drug Discov Today Technol; 2018 Aug; 28():53-61. PubMed ID: 30205881
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Mesenchymal stromal cells improve the transplantation outcome of CRISPR-Cas9 gene-edited human HSPCs.
    Crippa S; Conti A; Vavassori V; Ferrari S; Beretta S; Rivis S; Bosotti R; Scala S; Pirroni S; Jofra-Hernandez R; Santi L; Basso-Ricci L; Merelli I; Genovese P; Aiuti A; Naldini L; Di Micco R; Bernardo ME
    Mol Ther; 2023 Jan; 31(1):230-248. PubMed ID: 35982622
    [TBL] [Abstract][Full Text] [Related]  

  • 46. CRISPR-targeted MAGT1 insertion restores XMEN patient hematopoietic stem cells and lymphocytes.
    Brault J; Liu T; Bello E; Liu S; Sweeney CL; Meis RJ; Koontz S; Corsino C; Choi U; Vayssiere G; Bosticardo M; Dowdell K; Lazzarotto CR; Clark AB; Notarangelo LD; Ravell JC; Lenardo MJ; Kleinstiver BP; Tsai SQ; Wu X; Dahl GA; Malech HL; De Ravin SS
    Blood; 2021 Dec; 138(26):2768-2780. PubMed ID: 34086870
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The difficult translational pathway from animal models to patients.
    Cavazzana M; Miccio A
    Cell Stem Cell; 2024 Apr; 31(4):435-436. PubMed ID: 38579680
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [Genome-editing: focus on the off-target effects].
    He X; Gu F
    Sheng Wu Gong Cheng Xue Bao; 2017 Oct; 33(10):1757-1775. PubMed ID: 29082723
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Parameters affecting successful stem cell collections for genetic therapies in sickle cell disease.
    Justus DG; Manis JP
    Transfus Apher Sci; 2021 Feb; 60(1):103059. PubMed ID: 33541761
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Delivery technologies for genome editing.
    Yin H; Kauffman KJ; Anderson DG
    Nat Rev Drug Discov; 2017 Jun; 16(6):387-399. PubMed ID: 28337020
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Promise of gene therapy to treat sickle cell disease.
    Romero Z; DeWitt M; Walters MC
    Expert Opin Biol Ther; 2018 Nov; 18(11):1123-1136. PubMed ID: 30324810
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Gene Editing in Hematopoietic Stem Cells.
    Liao J; Wu Y
    Adv Exp Med Biol; 2023; 1442():177-199. PubMed ID: 38228965
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TRIAMF: A New Method for Delivery of Cas9 Ribonucleoprotein Complex to Human Hematopoietic Stem Cells.
    Yen J; Fiorino M; Liu Y; Paula S; Clarkson S; Quinn L; Tschantz WR; Klock H; Guo N; Russ C; Yu VWC; Mickanin C; Stevenson SC; Lee C; Yang Y
    Sci Rep; 2018 Nov; 8(1):16304. PubMed ID: 30389991
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-Specific Genome Engineering in Human Pluripotent Stem Cells.
    Merkert S; Martin U
    Int J Mol Sci; 2016 Jun; 17(7):. PubMed ID: 27347935
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Specificity of CRISPR-Cas9 Editing in Exagamglogene Autotemcel.
    Yen A; Zappala Z; Fine RS; Majarian TD; Sripakdeevong P; Altshuler D
    N Engl J Med; 2024 May; 390(18):1723-1725. PubMed ID: 38657268
    [No Abstract]   [Full Text] [Related]  

  • 56. Automated Good Manufacturing Practice-Compatible CRISPR-Cas9 Editing of Hematopoietic Stem and Progenitor Cells for Clinical Treatment of β-Hemoglobinopathies.
    Ureña-Bailén G; Block M; Grandi T; Aivazidou F; Quednau J; Krenz D; Daniel-Moreno A; Lamsfus-Calle A; Epting T; Handgretinger R; Wild S; Mezger M
    CRISPR J; 2023 Feb; 6(1):5-16. PubMed ID: 36662546
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Controlled Cycling and Quiescence Enables Efficient HDR in Engraftment-Enriched Adult Hematopoietic Stem and Progenitor Cells.
    Shin JJ; Schröder MS; Caiado F; Wyman SK; Bray NL; Bordi M; Dewitt MA; Vu JT; Kim WT; Hockemeyer D; Manz MG; Corn JE
    Cell Rep; 2020 Sep; 32(9):108093. PubMed ID: 32877675
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In Vivo Genome Editing as a Therapeutic Approach.
    Ho BX; Loh SJH; Chan WK; Soh BS
    Int J Mol Sci; 2018 Sep; 19(9):. PubMed ID: 30213032
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Impact of CRISPR/HDR editing versus lentiviral transduction on long-term engraftment and clonal dynamics of HSPCs in rhesus macaques.
    Lee BC; Gin A; Wu C; Singh K; Grice M; Mortlock R; Abraham D; Fan X; Zhou Y; AlJanahi A; Choi U; DeRavin SS; Shin T; Hong S; Dunbar CE
    Cell Stem Cell; 2024 Apr; 31(4):455-466.e4. PubMed ID: 38508195
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Combined lentiviral- and RNA-mediated CRISPR/Cas9 delivery for efficient and traceable gene editing in human hematopoietic stem and progenitor cells.
    Yudovich D; Bäckström A; Schmiderer L; Žemaitis K; Subramaniam A; Larsson J
    Sci Rep; 2020 Dec; 10(1):22393. PubMed ID: 33372184
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 26.