These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34510343)

  • 1. Assessment of major food crops production-based environmental efficiency in China, India, and Pakistan.
    Aslam MS; Huanxue P; Sohail S; Majeed MT; Rahman SU; Anees SA
    Environ Sci Pollut Res Int; 2022 Feb; 29(7):10091-10100. PubMed ID: 34510343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Assessment of rice and wheat production efficiency based on data envelopment analysis.
    Aslam MS; Xue PH; Bashir S; Alfakhri Y; Nurunnabi M; Nguyen VC
    Environ Sci Pollut Res Int; 2021 Aug; 28(29):38522-38534. PubMed ID: 33738743
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Economics, energy, and environmental assessment of diversified crop rotations in sub-Himalayas of India.
    Singh RJ; Meena RL; Sharma NK; Kumar S; Kumar K; Kumar D
    Environ Monit Assess; 2016 Feb; 188(2):79. PubMed ID: 26739009
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Achieving higher eco-efficiency for three staple food crops with ecosystem services based on regional heterogeneity in China.
    Gao L; Zhao G; Liang L; Chen B
    Sci Total Environ; 2024 Oct; 948():174942. PubMed ID: 39047822
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pathway analysis of food security by employing climate change, water, and agriculture nexus in Pakistan: partial least square structural equation modeling.
    Usman M; Ali A; Bashir MK; Mushtaq K; Ghafoor A; Amjad F; Hashim M; Baig SA
    Environ Sci Pollut Res Int; 2023 Aug; 30(38):88577-88597. PubMed ID: 37436630
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A district-level analysis for measuring the effects of climate change on production of agricultural crops, i.e., wheat and paddy: evidence from India.
    Bhardwaj M; Kumar P; Kumar S; Dagar V; Kumar A
    Environ Sci Pollut Res Int; 2022 May; 29(21):31861-31885. PubMed ID: 35013960
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of straw returning levels on carbon footprint and net ecosystem economic benefits from rice-wheat rotation in central China.
    Li SH; Guo LJ; Cao CG; Li CF
    Environ Sci Pollut Res Int; 2021 Feb; 28(5):5742-5754. PubMed ID: 32974819
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Examining the carbon emissions and climate impacts on main agricultural crops production and land use: updated evidence from Pakistan.
    Rehman A; Ma H; Ozturk I; Ahmad MI
    Environ Sci Pollut Res Int; 2022 Jan; 29(1):868-882. PubMed ID: 34342821
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Changes in agricultural land use and its consequences on crop productivity, diversity, and food availability in an agriculturally developed state of India.
    Sharma J; Singh O
    Environ Monit Assess; 2023 May; 195(6):747. PubMed ID: 37243796
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comprehensive Environmental Assessment of Potato as Staple Food Policy in China.
    Gao B; Huang W; Xue X; Hu Y; Huang Y; Wang L; Ding S; Cui S
    Int J Environ Res Public Health; 2019 Jul; 16(15):. PubMed ID: 31362347
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Projective analysis of staple food crop productivity in adaptation to future climate change in China.
    Zhang Q; Zhang W; Li T; Sun W; Yu Y; Wang G
    Int J Biometeorol; 2017 Aug; 61(8):1445-1460. PubMed ID: 28247124
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Crossing the rice-wheat border: Not all intra-cultural adaptation is equal.
    English AS; Geeraert N
    PLoS One; 2020; 15(8):e0236326. PubMed ID: 32822363
    [TBL] [Abstract][Full Text] [Related]  

  • 13. [Estimations of application dosage and greenhouse gas emission of chemical pesticides in staple crops in China.].
    Zhang G; Lu F; Huang ZG; Chen S; Wang XK
    Ying Yong Sheng Tai Xue Bao; 2016 Sep; 27(9):2875-2883. PubMed ID: 29732850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased greenhouse gas emissions intensity of major croplands in China: Implications for food security and climate change mitigation.
    Zhang J; Tian H; Shi H; Zhang J; Wang X; Pan S; Yang J
    Glob Chang Biol; 2020 Nov; 26(11):6116-6133. PubMed ID: 32697859
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling Adaptation Strategies against Climate Change Impacts in Integrated Rice-Wheat Agricultural Production System of Pakistan.
    Anser MK; Hina T; Hameed S; Nasir MH; Ahmad I; Naseer MAUR
    Int J Environ Res Public Health; 2020 Apr; 17(7):. PubMed ID: 32272663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Spatiotemporal patterns of paddy rice croplands in China and India from 2000 to 2015.
    Zhang G; Xiao X; Biradar CM; Dong J; Qin Y; Menarguez MA; Zhou Y; Zhang Y; Jin C; Wang J; Doughty RB; Ding M; Moore B
    Sci Total Environ; 2017 Feb; 579():82-92. PubMed ID: 27866742
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The impact of carbon emissions from lag fertilization on wheat production.
    Rahim A; Peng Q; Chen H; Liu Y
    PLoS One; 2024; 19(3):e0299299. PubMed ID: 38512895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Semidwarf rice and wheat in global food needs.
    Athwal DS
    Q Rev Biol; 1971 Mar; 46(1):1-34. PubMed ID: 4927378
    [No Abstract]   [Full Text] [Related]  

  • 19. Determinants of wheat residue burning: Evidence from India.
    Lopes AA; Tasneem D; Viriyavipart A
    PLoS One; 2023; 18(12):e0296059. PubMed ID: 38157345
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial distribution and controlling factors of heavy metals contents in paddy soil and crop grains of rice-wheat cropping system along highway in East China.
    Feng J; Zhao J; Bian X; Zhang W
    Environ Geochem Health; 2012 Oct; 34(5):605-14. PubMed ID: 22527116
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.