BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

272 related articles for article (PubMed ID: 34510451)

  • 1. Mechanisms of cAMP compartmentation in cardiac myocytes: experimental and computational approaches to understanding.
    Harvey RD; Clancy CE
    J Physiol; 2021 Oct; 599(20):4527-4544. PubMed ID: 34510451
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Compartmentalized cAMP signaling in cardiac ventricular myocytes.
    Agarwal SR; Sherpa RT; Moshal KS; Harvey RD
    Cell Signal; 2022 Jan; 89():110172. PubMed ID: 34687901
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A Computational Modeling and Simulation Approach to Investigate Mechanisms of Subcellular cAMP Compartmentation.
    Yang PC; Boras BW; Jeng MT; Docken SS; Lewis TJ; McCulloch AD; Harvey RD; Clancy CE
    PLoS Comput Biol; 2016 Jul; 12(7):e1005005. PubMed ID: 27409243
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cardiac contraction and relaxation are regulated by distinct subcellular cAMP pools.
    Lin TY; Mai QN; Zhang H; Wilson E; Chien HC; Yee SW; Giacomini KM; Olgin JE; Irannejad R
    Nat Chem Biol; 2024 Jan; 20(1):62-73. PubMed ID: 37474759
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Compartmentation of β
    Rudokas MW; Post JP; Sataray-Rodriguez A; Sherpa RT; Moshal KS; Agarwal SR; Harvey RD
    Br J Pharmacol; 2021 Apr; 178(7):1574-1587. PubMed ID: 33475150
    [TBL] [Abstract][Full Text] [Related]  

  • 6. cAMP/PKA signaling compartmentalization in cardiomyocytes: Lessons from FRET-based biosensors.
    Ghigo A; Mika D
    J Mol Cell Cardiol; 2019 Jun; 131():112-121. PubMed ID: 31028775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The impact of ovariectomy on cardiac excitation-contraction coupling is mediated through cAMP/PKA-dependent mechanisms.
    Parks RJ; Bogachev O; Mackasey M; Ray G; Rose RA; Howlett SE
    J Mol Cell Cardiol; 2017 Oct; 111():51-60. PubMed ID: 28778766
    [TBL] [Abstract][Full Text] [Related]  

  • 8. cAMP microdomains and L-type Ca2+ channel regulation in guinea-pig ventricular myocytes.
    Warrier S; Ramamurthy G; Eckert RL; Nikolaev VO; Lohse MJ; Harvey RD
    J Physiol; 2007 May; 580(Pt.3):765-76. PubMed ID: 17289786
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational modeling approaches to cAMP/PKA signaling in cardiomyocytes.
    McCabe KJ; Rangamani P
    J Mol Cell Cardiol; 2021 May; 154():32-40. PubMed ID: 33548239
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Sex differences in SR Ca(2+) release in murine ventricular myocytes are regulated by the cAMP/PKA pathway.
    Parks RJ; Ray G; Bienvenu LA; Rose RA; Howlett SE
    J Mol Cell Cardiol; 2014 Oct; 75():162-73. PubMed ID: 25066697
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A long lasting β1 adrenergic receptor stimulation of cAMP/protein kinase A (PKA) signal in cardiac myocytes.
    Fu Q; Kim S; Soto D; De Arcangelis V; DiPilato L; Liu S; Xu B; Shi Q; Zhang J; Xiang YK
    J Biol Chem; 2014 May; 289(21):14771-81. PubMed ID: 24713698
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of protein kinase A and A kinase anchoring proteins in buffering and compartmentation of cAMP signalling in human airway smooth muscle cells.
    Sherpa RT; Moshal KS; Agarwal SR; Ostrom RS; Harvey RD
    Br J Pharmacol; 2024 Apr; ():. PubMed ID: 38613158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. AKAPs: the architectural underpinnings of local cAMP signaling.
    Kritzer MD; Li J; Dodge-Kafka K; Kapiloff MS
    J Mol Cell Cardiol; 2012 Feb; 52(2):351-8. PubMed ID: 21600214
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of cholesterol depletion on compartmentalized cAMP responses in adult cardiac myocytes.
    Agarwal SR; MacDougall DA; Tyser R; Pugh SD; Calaghan SC; Harvey RD
    J Mol Cell Cardiol; 2011 Mar; 50(3):500-9. PubMed ID: 21115018
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial and temporal aspects of cAMP signalling in cardiac myocytes.
    Iancu RV; Ramamurthy G; Harvey RD
    Clin Exp Pharmacol Physiol; 2008 Nov; 35(11):1343-8. PubMed ID: 18671712
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of cardiac function by cAMP nanodomains.
    Folkmanaite M; Zaccolo M
    Biosci Rep; 2023 Feb; 43(2):. PubMed ID: 36749130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphodiesterase 8A (PDE8A) regulates excitation-contraction coupling in ventricular myocytes.
    Patrucco E; Albergine MS; Santana LF; Beavo JA
    J Mol Cell Cardiol; 2010 Aug; 49(2):330-3. PubMed ID: 20353794
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Localized cAMP-dependent signaling mediates beta 2-adrenergic modulation of cardiac excitation-contraction coupling.
    Zhou YY; Cheng H; Bogdanov KY; Hohl C; Altschuld R; Lakatta EG; Xiao RP
    Am J Physiol; 1997 Sep; 273(3 Pt 2):H1611-8. PubMed ID: 9321856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intracellular tortuosity underlies slow cAMP diffusion in adult ventricular myocytes.
    Richards M; Lomas O; Jalink K; Ford KL; Vaughan-Jones RD; Lefkimmiatis K; Swietach P
    Cardiovasc Res; 2016 Jun; 110(3):395-407. PubMed ID: 27089919
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Heart failure leads to altered β2-adrenoceptor/cyclic adenosine monophosphate dynamics in the sarcolemmal phospholemman/Na,K ATPase microdomain.
    Bastug-Özel Z; Wright PT; Kraft AE; Pavlovic D; Howie J; Froese A; Fuller W; Gorelik J; Shattock MJ; Nikolaev VO
    Cardiovasc Res; 2019 Mar; 115(3):546-555. PubMed ID: 30165515
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.