These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
25. The BOS loci of Arabidopsis are required for resistance to Botrytis cinerea infection. Veronese P; Chen X; Bluhm B; Salmeron J; Dietrich R; Mengiste T Plant J; 2004 Nov; 40(4):558-74. PubMed ID: 15500471 [TBL] [Abstract][Full Text] [Related]
26. Inducible biosynthesis and immune function of the systemic acquired resistance inducer N-hydroxypipecolic acid in monocotyledonous and dicotyledonous plants. Schnake A; Hartmann M; Schreiber S; Malik J; Brahmann L; Yildiz I; von Dahlen J; Rose LE; Schaffrath U; Zeier J J Exp Bot; 2020 Oct; 71(20):6444-6459. PubMed ID: 32725118 [TBL] [Abstract][Full Text] [Related]
27. N-hydroxypipecolic acid and salicylic acid: a metabolic duo for systemic acquired resistance. Hartmann M; Zeier J Curr Opin Plant Biol; 2019 Aug; 50():44-57. PubMed ID: 30927665 [TBL] [Abstract][Full Text] [Related]
28. Light conditions influence specific defence responses in incompatible plant-pathogen interactions: uncoupling systemic resistance from salicylic acid and PR-1 accumulation. Zeier J; Pink B; Mueller MJ; Berger S Planta; 2004 Aug; 219(4):673-83. PubMed ID: 15098125 [TBL] [Abstract][Full Text] [Related]
29. A family of pathogen-induced cysteine-rich transmembrane proteins is involved in plant disease resistance. Pereira Mendes M; Hickman R; Van Verk MC; Nieuwendijk NM; Reinstädler A; Panstruga R; Pieterse CMJ; Van Wees SCM Planta; 2021 Apr; 253(5):102. PubMed ID: 33856567 [TBL] [Abstract][Full Text] [Related]
30. Linking phytochrome to plant immunity: low red : far-red ratios increase Arabidopsis susceptibility to Botrytis cinerea by reducing the biosynthesis of indolic glucosinolates and camalexin. Cargnel MD; Demkura PV; Ballaré CL New Phytol; 2014 Oct; 204(2):342-54. PubMed ID: 25236170 [TBL] [Abstract][Full Text] [Related]
31. Arabidopsis thaliana FLOWERING LOCUS D is required for systemic acquired resistance. Singh V; Roy S; Giri MK; Chaturvedi R; Chowdhury Z; Shah J; Nandi AK Mol Plant Microbe Interact; 2013 Sep; 26(9):1079-88. PubMed ID: 23745676 [TBL] [Abstract][Full Text] [Related]
32. Multiple candidate effectors from the oomycete pathogen Hyaloperonospora arabidopsidis suppress host plant immunity. Fabro G; Steinbrenner J; Coates M; Ishaque N; Baxter L; Studholme DJ; Körner E; Allen RL; Piquerez SJ; Rougon-Cardoso A; Greenshields D; Lei R; Badel JL; Caillaud MC; Sohn KH; Van den Ackerveken G; Parker JE; Beynon J; Jones JD PLoS Pathog; 2011 Nov; 7(11):e1002348. PubMed ID: 22072967 [TBL] [Abstract][Full Text] [Related]
33. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. Návarová H; Bernsdorff F; Döring AC; Zeier J Plant Cell; 2012 Dec; 24(12):5123-41. PubMed ID: 23221596 [TBL] [Abstract][Full Text] [Related]
34. Constitutive expression of MKS1 confers susceptibility to Botrytis cinerea infection independent of PAD3 expression. Fiil BK; Petersen M Plant Signal Behav; 2011 Oct; 6(10):1425-7. PubMed ID: 21900742 [TBL] [Abstract][Full Text] [Related]
35. Dissecting phosphite-induced priming in Arabidopsis infected with Hyaloperonospora arabidopsidis. Massoud K; Barchietto T; Le Rudulier T; Pallandre L; Didierlaurent L; Garmier M; Ambard-Bretteville F; Seng JM; Saindrenan P Plant Physiol; 2012 May; 159(1):286-98. PubMed ID: 22408091 [TBL] [Abstract][Full Text] [Related]
36. The Gouhier-Darimont C; Stahl E; Glauser G; Reymond P Front Plant Sci; 2019; 10():623. PubMed ID: 31134123 [TBL] [Abstract][Full Text] [Related]
37. The Arabidopsis thaliana dihydroxyacetone phosphate reductase gene SUPPRESSSOR OF FATTY ACID DESATURASE DEFICIENCY1 is required for glycerolipid metabolism and for the activation of systemic acquired resistance. Nandi A; Welti R; Shah J Plant Cell; 2004 Feb; 16(2):465-77. PubMed ID: 14729910 [TBL] [Abstract][Full Text] [Related]
38. The role of CYP71A12 monooxygenase in pathogen-triggered tryptophan metabolism and Arabidopsis immunity. Pastorczyk M; Kosaka A; Piślewska-Bednarek M; López G; Frerigmann H; Kułak K; Glawischnig E; Molina A; Takano Y; Bednarek P New Phytol; 2020 Jan; 225(1):400-412. PubMed ID: 31411742 [TBL] [Abstract][Full Text] [Related]
39. Metabolite profiling reveals a role for intercellular dihydrocamalexic acid in the response of mature Arabidopsis thaliana to Pseudomonas syringae. Kempthorne CJ; Nielsen AJ; Wilson DC; McNulty J; Cameron RK; Liscombe DK Phytochemistry; 2021 Jul; 187():112747. PubMed ID: 33823457 [TBL] [Abstract][Full Text] [Related]
40. Arabidopsis ssi2-conferred susceptibility to Botrytis cinerea is dependent on EDS5 and PAD4. Nandi A; Moeder W; Kachroo P; Klessig DF; Shah J Mol Plant Microbe Interact; 2005 Apr; 18(4):363-70. PubMed ID: 15828688 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]