These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34510468)

  • 21. Interactions between respiratory oscillators in adult rats.
    Huckstepp RT; Henderson LE; Cardoza KP; Feldman JL
    Elife; 2016 Jun; 5():. PubMed ID: 27300271
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Abdominal expiratory activity in the rat brainstem-spinal cord in situ: patterns, origins and implications for respiratory rhythm generation.
    Abdala AP; Rybak IA; Smith JC; Paton JF
    J Physiol; 2009 Jul; 587(Pt 14):3539-59. PubMed ID: 19491247
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Locus Coeruleus as a vigilance centre for active inspiration and expiration in rats.
    Magalhães KS; Spiller PF; da Silva MP; Kuntze LB; Paton JFR; Machado BH; Moraes DJA
    Sci Rep; 2018 Oct; 8(1):15654. PubMed ID: 30353035
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hypercapnia-induced active expiration increases in sleep and enhances ventilation in unanaesthetized rats.
    Leirão IP; Silva CA; Gargaglioni LH; da Silva GSF
    J Physiol; 2018 Aug; 596(15):3271-3283. PubMed ID: 28776683
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Release your inhibitions: The role of post-inhibitory rebound and synaptic inhibition in the generation of expiratory activity.
    Huckstepp RTR; Funk GD
    J Physiol; 2021 Dec; 599(24):5331-5332. PubMed ID: 34783025
    [No Abstract]   [Full Text] [Related]  

  • 26. Distinct parafacial regions in control of breathing in adult rats.
    Huckstepp RTR; Cardoza KP; Henderson LE; Feldman JL
    PLoS One; 2018; 13(8):e0201485. PubMed ID: 30096151
    [TBL] [Abstract][Full Text] [Related]  

  • 27. GABA
    Jurčić N; Er-Raoui G; Airault C; Trouslard J; Wanaverbecq N; Seddik R
    J Physiol; 2019 Jan; 597(2):631-651. PubMed ID: 30418666
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synaptic rhythm of caudal medullary expiratory neurones during stimulation of the hypothalamic defence area of the cat.
    Ballantyne D; Jordan D; Spyer KM; Wood LM
    J Physiol; 1988 Nov; 405():527-46. PubMed ID: 3255800
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synaptic and intrinsic activation of GABAergic neurons in the cardiorespiratory brainstem network.
    Frank JG; Mendelowitz D
    PLoS One; 2012; 7(5):e36459. PubMed ID: 22570717
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Distinct pathways to the parafacial respiratory group to trigger active expiration in adult rats.
    Silva JN; Oliveira LM; Souza FC; Moreira TS; Takakura AC
    Am J Physiol Lung Cell Mol Physiol; 2019 Sep; 317(3):L402-L413. PubMed ID: 31242022
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of active expiration by serotoninergic mechanisms of the ventral medulla of rats.
    Lemes EV; Colombari E; Zoccal DB
    J Appl Physiol (1985); 2016 Nov; 121(5):1135-1144. PubMed ID: 27660299
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Peripheral chemoreflex activation induces expiratory but not inspiratory excitation of C1 pre-sympathetic neurones of rats.
    da Silva MP; Spiller PF; Paton JFR; Moraes DJA
    Acta Physiol (Oxf); 2022 Aug; 235(4):e13853. PubMed ID: 35722749
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Inhibition by opioids acting on mu-receptors of GABAergic and glutamatergic postsynaptic potentials in single rat periaqueductal gray neurones in vitro.
    Chieng B; Christie MJ
    Br J Pharmacol; 1994 Sep; 113(1):303-9. PubMed ID: 7812626
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The Kölliker-Fuse nucleus acts as a timekeeper for late-expiratory abdominal activity.
    Jenkin SE; Milsom WK; Zoccal DB
    Neuroscience; 2017 Apr; 348():63-72. PubMed ID: 28188852
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation.
    Onimaru H; Arata A; Homma I
    Jpn J Physiol; 1997 Oct; 47(5):385-403. PubMed ID: 9504127
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effects of ethanol on expiratory neuronal activities in decerebrated cats.
    Takeda R; Haji A
    Pharmacol Toxicol; 1990 Mar; 66(3):190-6. PubMed ID: 2333274
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Hyperexcitability and plasticity induced by sustained hypoxia on rectus abdominis motoneurons.
    da Silva MP; Moraes DJA; Bonagamba LGH; Mecawi AS; Varanda WA; Machado BH
    J Physiol; 2019 Apr; 597(7):1935-1956. PubMed ID: 30747446
    [TBL] [Abstract][Full Text] [Related]  

  • 38. C1 neurons are part of the circuitry that recruits active expiration in response to the activation of peripheral chemoreceptors.
    Malheiros-Lima MR; Silva JN; Souza FC; Takakura AC; Moreira TS
    Elife; 2020 Jan; 9():. PubMed ID: 31971507
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The medullary respiratory network in the rat.
    Schwarzacher SW; Wilhelm Z; Anders K; Richter DW
    J Physiol; 1991 Apr; 435():631-44. PubMed ID: 1770454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A study comparing the actions of gabapentin and pregabalin on the electrophysiological properties of cultured DRG neurones from neonatal rats.
    McClelland D; Evans RM; Barkworth L; Martin DJ; Scott RH
    BMC Pharmacol; 2004 Aug; 4():14. PubMed ID: 15294026
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.