These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. The diversity of quinoa morphological traits and seed metabolic composition. Tabatabaei I; Alseekh S; Shahid M; Leniak E; Wagner M; Mahmoudi H; Thushar S; Fernie AR; Murphy KM; Schmöckel SM; Tester M; Mueller-Roeber B; Skirycz A; Balazadeh S Sci Data; 2022 Jun; 9(1):323. PubMed ID: 35725573 [TBL] [Abstract][Full Text] [Related]
6. Understanding the Molecular Basis of Salt Sequestration in Epidermal Bladder Cells of Chenopodium quinoa. Böhm J; Messerer M; Müller HM; Scholz-Starke J; Gradogna A; Scherzer S; Maierhofer T; Bazihizina N; Zhang H; Stigloher C; Ache P; Al-Rasheid KAS; Mayer KFX; Shabala S; Carpaneto A; Haberer G; Zhu JK; Hedrich R Curr Biol; 2018 Oct; 28(19):3075-3085.e7. PubMed ID: 30245105 [TBL] [Abstract][Full Text] [Related]
7. Influence of natural and synthetic vitamin C (ascorbic acid) on primary and secondary metabolites and associated metabolism in quinoa (Chenopodium quinoa Willd.) plants under water deficit regimes. Aziz A; Akram NA; Ashraf M Plant Physiol Biochem; 2018 Feb; 123():192-203. PubMed ID: 29248677 [TBL] [Abstract][Full Text] [Related]
8. The combined effect of Cr(III) and NaCl determines changes in metal uptake, nutrient content, and gene expression in quinoa (Chenopodium quinoa Willd.). Guarino F; Ruiz KB; Castiglione S; Cicatelli A; Biondi S Ecotoxicol Environ Saf; 2020 Apr; 193():110345. PubMed ID: 32092578 [TBL] [Abstract][Full Text] [Related]
9. A high-quality genome assembly of quinoa provides insights into the molecular basis of salt bladder-based salinity tolerance and the exceptional nutritional value. Zou C; Chen A; Xiao L; Muller HM; Ache P; Haberer G; Zhang M; Jia W; Deng P; Huang R; Lang D; Li F; Zhan D; Wu X; Zhang H; Bohm J; Liu R; Shabala S; Hedrich R; Zhu JK; Zhang H Cell Res; 2017 Nov; 27(11):1327-1340. PubMed ID: 28994416 [TBL] [Abstract][Full Text] [Related]
10. Stalk cell polar ion transport provide for bladder-based salinity tolerance in Chenopodium quinoa. Bazihizina N; Böhm J; Messerer M; Stigloher C; Müller HM; Cuin TA; Maierhofer T; Cabot J; Mayer KFX; Fella C; Huang S; Al-Rasheid KAS; Alquraishi S; Breadmore M; Mancuso S; Shabala S; Ache P; Zhang H; Zhu JK; Hedrich R; Scherzer S New Phytol; 2022 Sep; 235(5):1822-1835. PubMed ID: 35510810 [TBL] [Abstract][Full Text] [Related]
11. Structure, ultrastructure and cation accumulation in quinoa epidermal bladder cell complex under high saline stress. Palacios MB; Rizzo AJ; Heredia TB; Roqueiro G; Maldonado S; Murgida DH; Burrieza HP Protoplasma; 2024 Jul; 261(4):655-669. PubMed ID: 38217740 [TBL] [Abstract][Full Text] [Related]
12. Early signalling processes in roots play a crucial role in the differential salt tolerance in contrasting Chenopodium quinoa accessions. Bazihizina N; Vita F; Balestrini R; Kiferle C; Caparrotta S; Ghignone S; Atzori G; Mancuso S; Shabala S J Exp Bot; 2022 Jan; 73(1):292-306. PubMed ID: 34436573 [TBL] [Abstract][Full Text] [Related]
13. Ionic and osmotic relations in quinoa (Chenopodium quinoa Willd.) plants grown at various salinity levels. Hariadi Y; Marandon K; Tian Y; Jacobsen SE; Shabala S J Exp Bot; 2011 Jan; 62(1):185-93. PubMed ID: 20732880 [TBL] [Abstract][Full Text] [Related]
14. Epidermal bladder cells as a herbivore defense mechanism. Moog MW; Yang X; Bendtsen AK; Dong L; Crocoll C; Imamura T; Mori M; Cushman JC; Kant MR; Palmgren M Curr Biol; 2023 Nov; 33(21):4662-4673.e6. PubMed ID: 37852262 [TBL] [Abstract][Full Text] [Related]
15. Non-targeted metabolomics analysis of metabolite changes in two quinoa genotypes under drought stress. Zhu X; Zhang M; Wang B; Song X; Wang X; Wei X BMC Plant Biol; 2023 Oct; 23(1):503. PubMed ID: 37858063 [TBL] [Abstract][Full Text] [Related]
16. Guard Cell Transcriptome Reveals Membrane Transport, Stomatal Development and Cell Wall Modifications as Key Traits Involved in Salinity Tolerance in Halophytic Chenopodium quinoa. Rasouli F; Kiani-Pouya A; Movahedi A; Wang Y; Li L; Yu M; Pourkheirandish M; Zhou M; Chen Z; Zhang H; Shabala S Plant Cell Physiol; 2023 Mar; 64(2):204-220. PubMed ID: 36355785 [TBL] [Abstract][Full Text] [Related]
17. A novel WD40-repeat protein involved in formation of epidermal bladder cells in the halophyte quinoa. Imamura T; Yasui Y; Koga H; Takagi H; Abe A; Nishizawa K; Mizuno N; Ohki S; Mizukoshi H; Mori M Commun Biol; 2020 Sep; 3(1):513. PubMed ID: 32943738 [TBL] [Abstract][Full Text] [Related]
18. Analysis of widely targeted metabolites of quinoa sprouts (Chenopodium quinoa Willd.) under saline-alkali stress provides new insights into nutritional value. Qian G; Wang M; Zhou J; Wang X; Zhang Y; Liu Y; Zhu P; Han L; Li X; Liu C; Li L Food Chem; 2024 Aug; 448():138575. PubMed ID: 38604110 [TBL] [Abstract][Full Text] [Related]
19. Phenolic compounds and saponins in quinoa samples (Chenopodium quinoa Willd.) grown under different saline and nonsaline irrigation regimens. Gómez-Caravaca AM; Iafelice G; Lavini A; Pulvento C; Caboni MF; Marconi E J Agric Food Chem; 2012 May; 60(18):4620-7. PubMed ID: 22512450 [TBL] [Abstract][Full Text] [Related]
20. Transcriptome and Metabolome Combined to Analyze Quinoa Grain Quality Differences of Different Colors Cultivars. Liu Y; Liu J; Li L; Zhang P; Wang Q; Qin P Int J Mol Sci; 2022 Oct; 23(21):. PubMed ID: 36361672 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]