These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
247 related articles for article (PubMed ID: 34510554)
1. Liquid Metal Composites with Enhanced Thermal Conductivity and Stability Using Molecular Thermal Linker. Wang H; Xing W; Chen S; Song C; Dickey MD; Deng T Adv Mater; 2021 Oct; 33(43):e2103104. PubMed ID: 34510554 [TBL] [Abstract][Full Text] [Related]
2. Enhancing Thermal Transport in Silicone Composites via Bridging Liquid Metal Fillers with Reactive Metal Co-Fillers and Matrix Viscosity Tuning. Uppal A; Kong W; Rana A; Wang RY; Rykaczewski K ACS Appl Mater Interfaces; 2021 Sep; 13(36):43348-43355. PubMed ID: 34491735 [TBL] [Abstract][Full Text] [Related]
3. In Situ Alloying of Thermally Conductive Polymer Composites by Combining Liquid and Solid Metal Microadditives. Ralphs MI; Kemme N; Vartak PB; Joseph E; Tipnis S; Turnage S; Solanki KN; Wang RY; Rykaczewski K ACS Appl Mater Interfaces; 2018 Jan; 10(2):2083-2092. PubMed ID: 29235852 [TBL] [Abstract][Full Text] [Related]
4. Thermal Interface Materials with High Thermal Conductivity and Low Young's Modulus Using a Solid-Liquid Metal Codoping Strategy. Zhang XD; Zhang ZT; Wang HZ; Cao BY ACS Appl Mater Interfaces; 2023 Jan; 15(2):3534-3542. PubMed ID: 36604306 [TBL] [Abstract][Full Text] [Related]
5. The Dielectrophoretic Alignment of Biphasic Metal Fillers for Thermal Interface Materials. Lee Y; Akyildiz K; Kang C; So JH; Koo HJ Polymers (Basel); 2023 Dec; 15(24):. PubMed ID: 38139905 [TBL] [Abstract][Full Text] [Related]
6. Oxide-Mediated Formation of Chemically Stable Tungsten-Liquid Metal Mixtures for Enhanced Thermal Interfaces. Kong W; Wang Z; Wang M; Manning KC; Uppal A; Green MD; Wang RY; Rykaczewski K Adv Mater; 2019 Nov; 31(44):e1904309. PubMed ID: 31523854 [TBL] [Abstract][Full Text] [Related]
7. Gallium oxide-stabilized oil in liquid metal emulsions. Shah NUH; Kong W; Casey N; Kanetkar S; Wang RY; Rykaczewski K Soft Matter; 2021 Sep; 17(36):8269-8275. PubMed ID: 34397076 [TBL] [Abstract][Full Text] [Related]
8. 3D Printable concentrated liquid metal composite with high thermal conductivity. Moon S; Kim H; Lee K; Park J; Kim Y; Choi SQ iScience; 2021 Oct; 24(10):103183. PubMed ID: 34703989 [TBL] [Abstract][Full Text] [Related]
9. Surface Embedded Metal Nanowire-Liquid Metal-Elastomer Hybrid Composites for Stretchable Electronics. Shukla D; Wang H; Awartani O; Dickey MD; Zhu Y ACS Appl Mater Interfaces; 2024 Mar; 16(11):14183-14197. PubMed ID: 38457372 [TBL] [Abstract][Full Text] [Related]
10. Gallium-Based Liquid Metal Amalgams: Transitional-State Metallic Mixtures (TransM Tang J; Zhao X; Li J; Guo R; Zhou Y; Liu J ACS Appl Mater Interfaces; 2017 Oct; 9(41):35977-35987. PubMed ID: 28948776 [TBL] [Abstract][Full Text] [Related]
11. Pressure-Activated Thermal Transport via Oxide Shell Rupture in Liquid Metal Capsule Beds. Uppal A; Ralphs M; Kong W; Hart M; Rykaczewski K; Wang RY ACS Appl Mater Interfaces; 2020 Jan; 12(2):2625-2633. PubMed ID: 31859474 [TBL] [Abstract][Full Text] [Related]
12. Carbon nanotube-copper exhibiting metal-like thermal conductivity and silicon-like thermal expansion for efficient cooling of electronics. Subramaniam C; Yasuda Y; Takeya S; Ata S; Nishizawa A; Futaba D; Yamada T; Hata K Nanoscale; 2014 Mar; 6(5):2669-74. PubMed ID: 24441433 [TBL] [Abstract][Full Text] [Related]
13. Interfacial Engineering of Silicon Carbide Nanowire/Cellulose Microcrystal Paper toward High Thermal Conductivity. Yao Y; Zeng X; Pan G; Sun J; Hu J; Huang Y; Sun R; Xu JB; Wong CP ACS Appl Mater Interfaces; 2016 Nov; 8(45):31248-31255. PubMed ID: 27788322 [TBL] [Abstract][Full Text] [Related]
14. Thermal interface material with graphene enhanced sintered copper for high temperature power electronics. Deng S; Zhang X; Xiao GD; Zhang K; He X; Xin S; Liu X; Zhong A; Chai Y Nanotechnology; 2021 May; 32(31):. PubMed ID: 33910177 [TBL] [Abstract][Full Text] [Related]
16. High performance liquid metal thermal interface materials. Chen S; Deng Z; Liu J Nanotechnology; 2021 Feb; 32(9):092001. PubMed ID: 33207322 [TBL] [Abstract][Full Text] [Related]
17. Alveoli-Mimetic Synergistic Liquid and Solid Thermal Conductive Interface as a Novel Strategy for Designing High-Performance Thermal Interface Materials. Zheng S; Xue H; Liu Y; Yu X; Cao Z Small; 2024 Apr; 20(16):e2306750. PubMed ID: 38044278 [TBL] [Abstract][Full Text] [Related]
18. Significantly enhanced phonon mean free path and thermal conductivity by percolation of silver nanoflowers. Suh D; Lee S; Xu C; Jan AA; Baik S Phys Chem Chem Phys; 2019 Jan; 21(5):2453-2462. PubMed ID: 30652710 [TBL] [Abstract][Full Text] [Related]
19. Innocuous, Highly Conductive, and Affordable Thermal Interface Material with Copper-Based Multi-Dimensional Filler Design. Kim W; Kim C; Lee W; Park J; Kim D Biomolecules; 2021 Jan; 11(2):. PubMed ID: 33498514 [TBL] [Abstract][Full Text] [Related]
20. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering. Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C ACS Nano; 2024 Jul; 18(28):18560-18571. PubMed ID: 38941591 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]