These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
283 related articles for article (PubMed ID: 34510579)
1. 3D Bioprinting of Engineered Tissue Flaps with Hierarchical Vessel Networks (VesselNet) for Direct Host-To-Implant Perfusion. Szklanny AA; Machour M; Redenski I; Chochola V; Goldfracht I; Kaplan B; Epshtein M; Simaan Yameen H; Merdler U; Feinberg A; Seliktar D; Korin N; Jaroš J; Levenberg S Adv Mater; 2021 Oct; 33(42):e2102661. PubMed ID: 34510579 [TBL] [Abstract][Full Text] [Related]
2. Fabrication of Engineered Vascular Flaps Using 3D Printing Technologies. Machour M; Szklanny AA; Levenberg S J Vis Exp; 2022 May; (183):. PubMed ID: 35661700 [TBL] [Abstract][Full Text] [Related]
3. Direct 3D bioprinting of perfusable vascular constructs using a blend bioink. Jia W; Gungor-Ozkerim PS; Zhang YS; Yue K; Zhu K; Liu W; Pi Q; Byambaa B; Dokmeci MR; Shin SR; Khademhosseini A Biomaterials; 2016 Nov; 106():58-68. PubMed ID: 27552316 [TBL] [Abstract][Full Text] [Related]
4. Bioprinting 3D microfibrous scaffolds for engineering endothelialized myocardium and heart-on-a-chip. Zhang YS; Arneri A; Bersini S; Shin SR; Zhu K; Goli-Malekabadi Z; Aleman J; Colosi C; Busignani F; Dell'Erba V; Bishop C; Shupe T; Demarchi D; Moretti M; Rasponi M; Dokmeci MR; Atala A; Khademhosseini A Biomaterials; 2016 Dec; 110():45-59. PubMed ID: 27710832 [TBL] [Abstract][Full Text] [Related]
5. 3D-bioprinted functional and biomimetic hydrogel scaffolds incorporated with nanosilicates to promote bone healing in rat calvarial defect model. Liu B; Li J; Lei X; Cheng P; Song Y; Gao Y; Hu J; Wang C; Zhang S; Li D; Wu H; Sang H; Bi L; Pei G Mater Sci Eng C Mater Biol Appl; 2020 Jul; 112():110905. PubMed ID: 32409059 [TBL] [Abstract][Full Text] [Related]
6. ECM concentration and cell-mediated traction forces play a role in vascular network assembly in 3D bioprinted tissue. Zhang G; Varkey M; Wang Z; Xie B; Hou R; Atala A Biotechnol Bioeng; 2020 Apr; 117(4):1148-1158. PubMed ID: 31840798 [TBL] [Abstract][Full Text] [Related]
7. Sheet-based extrusion bioprinting: a new multi-material paradigm providing mid-extrusion micropatterning control for microvascular applications. Hooper R; Cummings C; Beck A; Vazquez-Armendariz J; Rodriguez C; Dean D Biofabrication; 2024 Mar; 16(2):. PubMed ID: 38447217 [TBL] [Abstract][Full Text] [Related]
8. A bioink blend for rotary 3D bioprinting tissue engineered small-diameter vascular constructs. Freeman S; Ramos R; Alexis Chando P; Zhou L; Reeser K; Jin S; Soman P; Ye K Acta Biomater; 2019 Sep; 95():152-164. PubMed ID: 31271883 [TBL] [Abstract][Full Text] [Related]
10. Bioprinting for vascular and vascularized tissue biofabrication. Datta P; Ayan B; Ozbolat IT Acta Biomater; 2017 Mar; 51():1-20. PubMed ID: 28087487 [TBL] [Abstract][Full Text] [Related]
11. Bioprinted anisotropic scaffolds with fast stress relaxation bioink for engineering 3D skeletal muscle and repairing volumetric muscle loss. Li T; Hou J; Wang L; Zeng G; Wang Z; Yu L; Yang Q; Yin J; Long M; Chen L; Chen S; Zhang H; Li Y; Wu Y; Huang W Acta Biomater; 2023 Jan; 156():21-36. PubMed ID: 36002128 [TBL] [Abstract][Full Text] [Related]
12. 3D bioprinting and microscale organization of vascularized tissue constructs using collagen-based bioink. Muthusamy S; Kannan S; Lee M; Sanjairaj V; Lu WF; Fuh JYH; Sriram G; Cao T Biotechnol Bioeng; 2021 Aug; 118(8):3150-3163. PubMed ID: 34037982 [TBL] [Abstract][Full Text] [Related]
13. Extracellular Matrix/Amorphous Magnesium Phosphate Bioink for 3D Bioprinting of Craniomaxillofacial Bone Tissue. Dubey N; Ferreira JA; Malda J; Bhaduri SB; Bottino MC ACS Appl Mater Interfaces; 2020 May; 12(21):23752-23763. PubMed ID: 32352748 [TBL] [Abstract][Full Text] [Related]
14. Fabrication of biomimetic vascular scaffolds for 3D tissue constructs using vascular corrosion casts. Huling J; Ko IK; Atala A; Yoo JJ Acta Biomater; 2016 Mar; 32():190-197. PubMed ID: 26772527 [TBL] [Abstract][Full Text] [Related]
15. Noninvasive Three-Dimensional Ning L; Zhu N; Smith A; Rajaram A; Hou H; Srinivasan S; Mohabatpour F; He L; Mclnnes A; Serpooshan V; Papagerakis P; Chen X ACS Appl Mater Interfaces; 2021 Jun; 13(22):25611-25623. PubMed ID: 34038086 [TBL] [Abstract][Full Text] [Related]
16. Bioprinting of Complex Vascularized Tissues. Zhu W; Yu C; Sun B; Chen S Methods Mol Biol; 2021; 2147():163-173. PubMed ID: 32840819 [TBL] [Abstract][Full Text] [Related]
17. Optimization of collagen type I-hyaluronan hybrid bioink for 3D bioprinted liver microenvironments. Mazzocchi A; Devarasetty M; Huntwork R; Soker S; Skardal A Biofabrication; 2018 Oct; 11(1):015003. PubMed ID: 30270846 [TBL] [Abstract][Full Text] [Related]
18. 3D-bioprintable endothelial cell-laden sacrificial ink for fabrication of microvessel networks. Cheng KC; Theato P; Hsu SH Biofabrication; 2023 Sep; 15(4):. PubMed ID: 37722376 [TBL] [Abstract][Full Text] [Related]
19. 3D bioprinting of urethra with PCL/PLCL blend and dual autologous cells in fibrin hydrogel: An in vitro evaluation of biomimetic mechanical property and cell growth environment. Zhang K; Fu Q; Yoo J; Chen X; Chandra P; Mo X; Song L; Atala A; Zhao W Acta Biomater; 2017 Mar; 50():154-164. PubMed ID: 27940192 [TBL] [Abstract][Full Text] [Related]
20. A Photo-Crosslinkable Kidney ECM-Derived Bioink Accelerates Renal Tissue Formation. Ali M; Pr AK; Yoo JJ; Zahran F; Atala A; Lee SJ Adv Healthc Mater; 2019 Apr; 8(7):e1800992. PubMed ID: 30725520 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]