These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 34510580)

  • 1. 18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction.
    Hong L; Yao H; Cui Y; Bi P; Zhang T; Cheng Y; Zu Y; Qin J; Yu R; Ge Z; Hou J
    Adv Mater; 2021 Oct; 33(43):e2103091. PubMed ID: 34510580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on Photovoltaic Characteristics by Organic Bilayer- and Bulk-Heterojunctions: Energy Losses, Carrier Recombination and Generation.
    Lee TH; Park SY; Du X; Park S; Zhang K; Li N; Cho S; Brabec CJ; Kim JY
    ACS Appl Mater Interfaces; 2020 Dec; 12(50):55945-55953. PubMed ID: 33270428
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interfacial and Bulk Nanostructures Control Loss of Charges in Organic Solar Cells.
    Naveed HB; Zhou K; Ma W
    Acc Chem Res; 2019 Oct; 52(10):2904-2915. PubMed ID: 31577121
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture.
    Heremans P; Cheyns D; Rand BP
    Acc Chem Res; 2009 Nov; 42(11):1740-7. PubMed ID: 19751055
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of Donor-Acceptor Vertical Composition Profile on Performance of Organic Bulk Heterojunction Solar Cells.
    Bi S; Ouyang Z; Shaik S; Li D
    Sci Rep; 2018 Jun; 8(1):9574. PubMed ID: 29934618
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pseudo-bilayer architecture enables high-performance organic solar cells with enhanced exciton diffusion length.
    Jiang K; Zhang J; Peng Z; Lin F; Wu S; Li Z; Chen Y; Yan H; Ade H; Zhu Z; Jen AK
    Nat Commun; 2021 Jan; 12(1):468. PubMed ID: 33473135
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ternary Organic Solar Cells with Coumarin7 as the Donor Exhibiting Greater Than 10% Power Conversion Efficiency and a High Fill Factor of 75.
    Chen XW; Tao SL; Fan C; Chen DC; Zhou L; Lin H; Zheng CJ; Su SJ
    ACS Appl Mater Interfaces; 2017 Sep; 9(35):29907-29916. PubMed ID: 28809535
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Morphology Control of Monomer-Polymer Hybrid Electron Acceptor for Bulk-Heterojunction Solar Cell Based on P3HT and Ti-Alkoxide with Ladder Polymer.
    Ueda Y; Kurokawa Y; Nishii K; Kanematsu H; Fukumoto T; Kato T
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161139
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toward Visibly Transparent Organic Photovoltaic Cells Based on a Near-Infrared Harvesting Bulk Heterojunction Blend.
    Lee J; Cha H; Yao H; Hou J; Suh YH; Jeong S; Lee K; Durrant JR
    ACS Appl Mater Interfaces; 2020 Jul; 12(29):32764-32770. PubMed ID: 32588623
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient Ternary Organic Solar Cells with a New Electron Acceptor Based on 3,4-(2,2-Dihexylpropylenedioxy)thiophene.
    Zhang C; Jiang P; Zhou X; Feng S; Bi Z; Xu X; Li C; Tang Z; Ma W; Bo Z
    ACS Appl Mater Interfaces; 2020 Sep; 12(36):40590-40598. PubMed ID: 32805919
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Interplay between efficiency and device architecture for small molecule organic solar cells.
    Williams G; Sutty S; Aziz H
    Phys Chem Chem Phys; 2014 Jun; 16(23):11398-408. PubMed ID: 24798196
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-Performance Organic Bulk-Heterojunction Solar Cells Based on Multiple-Donor or Multiple-Acceptor Components.
    Huang W; Cheng P; Yang YM; Li G; Yang Y
    Adv Mater; 2018 Feb; 30(8):. PubMed ID: 29333744
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigating the Trade-Off between Device Performance and Energy Loss in Nonfullerene Organic Solar Cells.
    Hong L; Yao H; Yu R; Xu Y; Gao B; Ge Z; Hou J
    ACS Appl Mater Interfaces; 2019 Aug; 11(32):29124-29131. PubMed ID: 31331162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Efficient Organic/Inorganic Hybrid Solar Cell Integrating Polymer Nanowires and Inorganic Nanotetrapods.
    Xu W; Tan F; Liu X; Zhang W; Qu S; Wang Z; Wang Z
    Nanoscale Res Lett; 2017 Dec; 12(1):11. PubMed ID: 28058645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A nanoscale study of charge extraction in organic solar cells: the impact of interfacial molecular configurations.
    Tang FC; Wu FC; Yen CT; Chang J; Chou WY; Gilbert Chang SH; Cheng HL
    Nanoscale; 2015 Jan; 7(1):104-12. PubMed ID: 25325829
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Performance enhancement by vertical morphology alteration of the active layer in organic solar cells.
    Bi S; Ouyang Z; Guo Q; Jiang C
    RSC Adv; 2018 Feb; 8(12):6519-6526. PubMed ID: 35540417
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Achieving Desired Pseudo-Planar Heterojunction Organic Solar Cells via Binary-Dilution Strategy.
    Wen L; Mao H; Zhang L; Zhang J; Qin Z; Tan L; Chen Y
    Adv Mater; 2024 Jan; 36(3):e2308159. PubMed ID: 37831921
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Over 19.2% Efficiency of Organic Solar Cells Enabled by Precisely Tuning the Charge Transfer State Via Donor Alloy Strategy.
    Gao J; Yu N; Chen Z; Wei Y; Li C; Liu T; Gu X; Zhang J; Wei Z; Tang Z; Hao X; Zhang F; Zhang X; Huang H
    Adv Sci (Weinh); 2022 Oct; 9(30):e2203606. PubMed ID: 35999345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. 16.67% Rigid and 14.06% Flexible Organic Solar Cells Enabled by Ternary Heterojunction Strategy.
    Yan T; Song W; Huang J; Peng R; Huang L; Ge Z
    Adv Mater; 2019 Sep; 31(39):e1902210. PubMed ID: 31411359
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells.
    Liao Q; Kang Q; Yang Y; An C; Xu B; Hou J
    Adv Mater; 2020 Feb; 32(7):e1906557. PubMed ID: 31880003
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.