BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 34510754)

  • 21. CRISPR/dCas9-mediated epigenetic modification reveals differential regulation of histone acetylation on Aspergillus niger secondary metabolite.
    Li X; Huang L; Pan L; Wang B; Pan L
    Microbiol Res; 2021 Apr; 245():126694. PubMed ID: 33482403
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene Targeting of HPV18 E6 and E7 Synchronously by Nonviral Transfection of CRISPR/Cas9 System in Cervical Cancer.
    Ling K; Yang L; Yang N; Chen M; Wang Y; Liang S; Li Y; Jiang L; Yan P; Liang Z
    Hum Gene Ther; 2020 Mar; 31(5-6):297-308. PubMed ID: 31989837
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Incorporation of a Synthetic Amino Acid into dCas9 Improves Control of Gene Silencing.
    Koopal B; Kruis AJ; Claassens NJ; Nobrega FL; van der Oost J
    ACS Synth Biol; 2019 Feb; 8(2):216-222. PubMed ID: 30668910
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A CRISPRi-dCas9 System for Archaea and Its Use To Examine Gene Function during Nitrogen Fixation by Methanosarcina acetivorans.
    Dhamad AE; Lessner DJ
    Appl Environ Microbiol; 2020 Oct; 86(21):. PubMed ID: 32826220
    [TBL] [Abstract][Full Text] [Related]  

  • 25. enChIP systems using different CRISPR orthologues and epitope tags.
    Fujita T; Yuno M; Fujii H
    BMC Res Notes; 2018 Feb; 11(1):154. PubMed ID: 29482606
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Waking up dormant tumor suppressor genes with zinc fingers, TALEs and the CRISPR/dCas9 system.
    Garcia-Bloj B; Moses C; Sgro A; Plani-Lam J; Arooj M; Duffy C; Thiruvengadam S; Sorolla A; Rashwan R; Mancera RL; Leisewitz A; Swift-Scanlan T; Corvalan AH; Blancafort P
    Oncotarget; 2016 Sep; 7(37):60535-60554. PubMed ID: 27528034
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers.
    Gao X; Tsang JC; Gaba F; Wu D; Lu L; Liu P
    Nucleic Acids Res; 2014 Nov; 42(20):e155. PubMed ID: 25223790
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Role of BMI1 in epithelial ovarian cancer: investigated via the CRISPR/Cas9 system and RNA sequencing.
    Zhao Q; Qian Q; Cao D; Yang J; Gui T; Shen K
    J Ovarian Res; 2018 Apr; 11(1):31. PubMed ID: 29685168
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cancer/testis antigen CT45: analysis of mRNA and protein expression in human cancer.
    Chen YT; Hsu M; Lee P; Shin SJ; Mhawech-Fauceglia P; Odunsi K; Altorki NK; Song CJ; Jin BQ; Simpson AJ; Old LJ
    Int J Cancer; 2009 Jun; 124(12):2893-8. PubMed ID: 19296537
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Localized delivery of CRISPR/dCas9 via layer-by-layer self-assembling peptide coating on nanofibers for neural tissue engineering.
    Zhang K; Chooi WH; Liu S; Chin JS; Murray A; Nizetic D; Cheng D; Chew SY
    Biomaterials; 2020 Oct; 256():120225. PubMed ID: 32738650
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Virus-like nanoparticle as a co-delivery system to enhance efficacy of CRISPR/Cas9-based cancer immunotherapy.
    Liu Q; Wang C; Zheng Y; Zhao Y; Wang Y; Hao J; Zhao X; Yi K; Shi L; Kang C; Liu Y
    Biomaterials; 2020 Nov; 258():120275. PubMed ID: 32798741
    [TBL] [Abstract][Full Text] [Related]  

  • 32. CKM and TERT dual promoters drive CRISPR-dCas9 to specifically inhibit the malignant behavior of osteosarcoma cells.
    Hu Y; Zhang H; Guo Z; Zhou J; Zhang W; Gong M; Wu J
    Cell Mol Biol Lett; 2023 Jul; 28(1):52. PubMed ID: 37415116
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Enhancing stem cell survival in an ischemic heart by CRISPR-dCas9-based gene regulation.
    Pan A; Weintraub NL; Tang Y
    Med Hypotheses; 2014 Dec; 83(6):702-5. PubMed ID: 25459138
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Role of carrier ligand in platinum resistance of human carcinoma cell lines.
    Schmidt W; Chaney SG
    Cancer Res; 1993 Feb; 53(4):799-805. PubMed ID: 8428361
    [TBL] [Abstract][Full Text] [Related]  

  • 35. RNA-guided transcriptional activation via CRISPR/dCas9 mimics overexpression phenotypes in Arabidopsis.
    Park JJ; Dempewolf E; Zhang W; Wang ZY
    PLoS One; 2017; 12(6):e0179410. PubMed ID: 28622347
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An upconversion nanoplatform for simultaneous photodynamic therapy and Pt chemotherapy to combat cisplatin resistance.
    Ai F; Sun T; Xu Z; Wang Z; Kong W; To MW; Wang F; Zhu G
    Dalton Trans; 2016 Aug; 45(33):13052-60. PubMed ID: 27430044
    [TBL] [Abstract][Full Text] [Related]  

  • 37. MicroRNA-133b targets glutathione S-transferase π expression to increase ovarian cancer cell sensitivity to chemotherapy drugs.
    Chen S; Jiao JW; Sun KX; Zong ZH; Zhao Y
    Drug Des Devel Ther; 2015; 9():5225-35. PubMed ID: 26396496
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rational gRNA design based on transcription factor binding data.
    Bergenholm D; Dabirian Y; Ferreira R; Siewers V; David F; Nielsen J
    Synth Biol (Oxf); 2021; 6(1):ysab014. PubMed ID: 34712839
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of Pt-, Pd-spermine complexes for their effect on polyamine pathway and cisplatin resistance in A2780 ovarian carcinoma cells.
    Tummala R; Diegelman P; Fiuza SM; Batista de Carvalho LA; Marques MP; Kramer DL; Clark K; Vujcic S; Porter CW; Pendyala L
    Oncol Rep; 2010 Jul; 24(1):15-24. PubMed ID: 20514439
    [TBL] [Abstract][Full Text] [Related]  

  • 40. CRISPR-dCas9-Guided and Telomerase-Responsive Nanosystem for Precise Anti-Cancer Drug Delivery.
    Ma Y; Mao G; Wu G; Cui Z; Zhang XE; Huang W
    ACS Appl Mater Interfaces; 2021 Feb; 13(7):7890-7896. PubMed ID: 33513005
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.