These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 34510823)

  • 1. Caffeic acid: an antioxidant with novel antisickling properties.
    Kassa T; Whalin JG; Richards MP; Alayash AI
    FEBS Open Bio; 2021 Dec; 11(12):3293-3303. PubMed ID: 34510823
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sickle Cell Hemoglobin in the Ferryl State Promotes βCys-93 Oxidation and Mitochondrial Dysfunction in Epithelial Lung Cells (E10).
    Kassa T; Jana S; Strader MB; Meng F; Jia Y; Wilson MT; Alayash AI
    J Biol Chem; 2015 Nov; 290(46):27939-58. PubMed ID: 26396189
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Substitutions in the β subunits of sickle-cell hemoglobin improve oxidative stability and increase the delay time of sickle-cell fiber formation.
    Meng F; Kassa T; Strader MB; Soman J; Olson JS; Alayash AI
    J Biol Chem; 2019 Mar; 294(11):4145-4159. PubMed ID: 30630954
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Targeting βCys93 in hemoglobin S with an antisickling agent possessing dual allosteric and antioxidant effects.
    Kassa T; Strader MB; Nakagawa A; Zapol WM; Alayash AI
    Metallomics; 2017 Sep; 9(9):1260-1270. PubMed ID: 28770911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hemoglobin oxidation-dependent reactions promote interactions with band 3 and oxidative changes in sickle cell-derived microparticles.
    Jana S; Strader MB; Meng F; Hicks W; Kassa T; Tarandovskiy I; De Paoli S; Simak J; Heaven MR; Belcher JD; Vercellotti GM; Alayash AI
    JCI Insight; 2018 Nov; 3(21):. PubMed ID: 30385713
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of α subunit substitutions on the oxidation of βCys93 and the stability of sickle cell hemoglobin.
    Hicks W; Meng F; Kassa T; Alayash AI
    Redox Rep; 2020 Dec; 25(1):95-103. PubMed ID: 33059548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrous hemoglobin and hemoglobin-based oxygen carriers acting as a peroxidase can inhibit oxidative damage to endothelial cells caused by hydrogen peroxide.
    Huo S; Lei X; He D; Zhang H; Yang Z; Mu W; Fang K; Xue D; Li H; Li X; Jia N; Zhu H; Chen C; Yan K
    Artif Organs; 2021 Oct; 45(10):1229-1239. PubMed ID: 34101875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Providence Mutation (βK82D) in Human Hemoglobin Substantially Reduces βCysteine 93 Oxidation and Oxidative Stress in Endothelial Cells.
    Jana S; Strader MB; Alayash AI
    Int J Mol Sci; 2020 Dec; 21(24):. PubMed ID: 33322551
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Antisickling Drugs Targeting βCys93 Reduce Iron Oxidation and Oxidative Changes in Sickle Cell Hemoglobin.
    Kassa T; Wood F; Strader MB; Alayash AI
    Front Physiol; 2019; 10():931. PubMed ID: 31396101
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tyrosine can protect against oxidative stress through ferryl hemoglobin reduction.
    Lu N; He Y; Chen C; Tian R; Xiao Q; Peng YY
    Toxicol In Vitro; 2014 Aug; 28(5):847-55. PubMed ID: 24698734
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidized Ferric and Ferryl Forms of Hemoglobin Trigger Mitochondrial Dysfunction and Injury in Alveolar Type I Cells.
    Chintagari NR; Jana S; Alayash AI
    Am J Respir Cell Mol Biol; 2016 Aug; 55(2):288-98. PubMed ID: 26974230
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization.
    Garel MC; Domenget C; Caburi-Martin J; Prehu C; Galacteros F; Beuzard Y
    J Biol Chem; 1986 Nov; 261(31):14704-9. PubMed ID: 3771547
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Oxidative pathways in the sickle cell and beyond.
    Alayash AI
    Blood Cells Mol Dis; 2018 May; 70():78-86. PubMed ID: 28554826
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis and antioxidant properties of caffeic acid corn bran arabinoxylan esters.
    Li Y; Zhu Y; Liang R; Yang C
    Int J Cosmet Sci; 2017 Aug; 39(4):402-410. PubMed ID: 28094854
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Responses of normal and sickle cell hemoglobin to S-nitroscysteine: implications for therapeutic applications of NO in treatment of sickle cell disease.
    Bonaventura C; Godette G; Ferruzzi G; Tesh S; Stevens RD; Henkens R
    Biophys Chem; 2002 Jul; 98(1-2):165-81. PubMed ID: 12128197
    [TBL] [Abstract][Full Text] [Related]  

  • 16. VZHE-039, a novel antisickling agent that prevents erythrocyte sickling under both hypoxic and anoxic conditions.
    Abdulmalik O; Pagare PP; Huang B; Xu GG; Ghatge MS; Xu X; Chen Q; Anabaraonye N; Musayev FN; Omar AM; Venitz J; Zhang Y; Safo MK
    Sci Rep; 2020 Nov; 10(1):20277. PubMed ID: 33219275
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Denaturing interaction between sickle hemoglobin and phosphatidylserine liposomes.
    Marva E; Hebbel RP
    Blood; 1994 Jan; 83(1):242-9. PubMed ID: 8274739
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the Binding Free Energy and Molecular Origin of Sickle Cell Hemoglobin Aggregation.
    Galamba N; Pipolo S
    J Phys Chem B; 2018 Aug; 122(30):7475-7483. PubMed ID: 29995412
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Can gas replace protein function? CO abrogates the oxidative toxicity of myoglobin.
    Sher EA; Sholto AY; Shaklai M; Shaklai N
    PLoS One; 2014; 9(8):e104075. PubMed ID: 25111140
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Systematic enhancement of polymerization of recombinant sickle hemoglobin mutants: implications for transgenic mouse model for sickle cell anemia.
    Li X; Mirza UA; Chait BT; Manning JM
    Blood; 1997 Dec; 90(11):4620-7. PubMed ID: 9373274
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.