These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 34510930)

  • 1. Upscaling of lignin precursor melt spinning by bicomponent spinning and its use for carbon fibre production.
    Bostan L; Hosseinaei O; Fourné R; Herrmann AS
    Philos Trans A Math Phys Eng Sci; 2021 Nov; 379(2209):20200334. PubMed ID: 34510930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Improved procedure for electro-spinning and carbonisation of neat solvent-fractionated softwood Kraft lignin.
    Khan I; Hararak B; Fernando GF
    Sci Rep; 2021 Aug; 11(1):16237. PubMed ID: 34376725
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Enhanced stabilization of cellulose-lignin hybrid filaments for carbon fiber production.
    Byrne N; De Silva R; Ma Y; Sixta H; Hummel M
    Cellulose (Lond); 2018; 25(1):723-733. PubMed ID: 31997858
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel Bicomponent Functional Fibers with Sheath/Core Configuration Containing Intumescent Flame-Retardants for Textile Applications.
    Maqsood M; Seide G
    Materials (Basel); 2019 Sep; 12(19):. PubMed ID: 31547511
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cellulose-lignin composite fibres as precursors for carbon fibres. Part 1 - Manufacturing and properties of precursor fibres.
    Trogen M; Le ND; Sawada D; Guizani C; Lourençon TV; Pitkänen L; Sixta H; Shah R; O'Neill H; Balakshin M; Byrne N; Hummel M
    Carbohydr Polym; 2021 Jan; 252():117133. PubMed ID: 33183592
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-Strength Composite Fibers from Cellulose-Lignin Blends Regenerated from Ionic Liquid Solution.
    Ma Y; Asaadi S; Johansson LS; Ahvenainen P; Reza M; Alekhina M; Rautkari L; Michud A; Hauru L; Hummel M; Sixta H
    ChemSusChem; 2015 Dec; 8(23):4030-9. PubMed ID: 26542190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystalline Characteristics, Mechanical Properties, Thermal Degradation Kinetics and Hydration Behavior of Biodegradable Fibers Melt-Spun from Polyoxymethylene/Poly(l-lactic acid) Blends.
    Li J; Wang Y; Wang X; Wu D
    Polymers (Basel); 2019 Oct; 11(11):. PubMed ID: 31731470
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mechanical properties of bioactive glass 9-93 fibres.
    Pirhonen E; Moimas L; Brink M
    Acta Biomater; 2006 Jan; 2(1):103-7. PubMed ID: 16701864
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Improving Processing and Performance of Pure Lignin Carbon Fibers through Hardwood and Herbaceous Lignin Blends.
    Hosseinaei O; Harper DP; Bozell JJ; Rials TG
    Int J Mol Sci; 2017 Jul; 18(7):. PubMed ID: 28671571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber Melt Spinning and Thermo-Stabilization of Para-Rubber Wood Lignin: An Approach for Fully Biomass Precursor Preparation.
    Wannid P; Hararak B; Padee S; Klinsukhon W; Suwannamek N; Raita M; Champreda V; Prahsarn C
    ACS Omega; 2023 Sep; 8(37):33891-33903. PubMed ID: 37744868
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Melt-processable polyvinyl alcohol/lignin composites with improved strength via synergistic plasticization of lignin.
    Mo J; Lei J; Wang H; Kang Q; Liu W; Qiu X
    Int J Biol Macromol; 2024 May; 267(Pt 2):131726. PubMed ID: 38688791
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanically recyclable melt-spun fibers from lignin esters and iron oxide nanoparticles: towards circular lignin materials.
    Thalakkale Veettil U; Moreno A; Huertas-Alonso AJ; Morsali M; Pylypchuk IV; Liu LY; Sipponen MH
    Green Chem; 2023 Dec; 25(24):10424-10435. PubMed ID: 38089756
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fabrication of Activated Carbon Fibers with Sheath-Core, Hollow, or Porous Structures via Conjugated Melt Spinning of Polyethylene Precursor.
    Won JS; Lee HR; Lee MJ; Jeon MH; Lee SG; Joo YL
    Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33287248
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fabrication and Performance of Phase Change Thermoregulated Fiber from Bicomponent Melt Spinning.
    Liu Z; Hu D; Yao J; Wang Y; Zhang G; Křemenáková D; Militky J; Wiener J; Li L; Zhu G
    Polymers (Basel); 2022 May; 14(9):. PubMed ID: 35567064
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using Sodium Polyacrylate to Gel-Spin Lignin/Poly(Vinyl Alcohol) Fiber at High Lignin Content.
    Biswas MC; Ford E
    Polymers (Basel); 2022 Jul; 14(13):. PubMed ID: 35808782
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biodegradable fibres spun from poly(lactide) generated by reactive extrusion.
    Schmack G; Jehnichen D; Vogel R; Tändler B; Beyreuther R; Jacobsen S; Fritz HG
    J Biotechnol; 2001 Mar; 86(2):151-60. PubMed ID: 11245903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rheology of Polyacrylonitrile/Lignin Blends in Ionic Liquids under Melt Spinning Conditions.
    Jiang J; Srinivas K; Kiziltas A; Geda A; Ahring BK
    Molecules; 2019 Jul; 24(14):. PubMed ID: 31336600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melt-Spun Fibers for Textile Applications.
    Hufenus R; Yan Y; Dauner M; Kikutani T
    Materials (Basel); 2020 Sep; 13(19):. PubMed ID: 32993085
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Laccase-initiated cross-linking of lignocellulose fibres using a ultra-filtered lignin isolated from kraft black liquor.
    Elegir G; Bussini D; Antonsson S; Lindström ME; Zoia L
    Appl Microbiol Biotechnol; 2007 Dec; 77(4):809-17. PubMed ID: 17955195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Toughening of Bio-Based PA 6.19 by Copolymerization with PA 6.6 - Synthesis and Production of Melt-Spun Monofilaments and Knitted Fabrics.
    Rist M; Löcken H; Ortega M; Greiner A
    Macromol Rapid Commun; 2023 Oct; 44(19):e2300256. PubMed ID: 37220654
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.