These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
377 related articles for article (PubMed ID: 34511908)
21. Glucose-coated superparamagnetic iron oxide nanoparticles prepared by metal vapor synthesis can target GLUT1 overexpressing tumors: In vitro tests and in vivo preliminary assessment. Barbaro D; Di Bari L; Gandin V; Marzano C; Ciaramella A; Malventi M; Evangelisti C PLoS One; 2022; 17(6):e0269603. PubMed ID: 35704647 [TBL] [Abstract][Full Text] [Related]
22. Increased cellular uptake of biocompatible superparamagnetic iron oxide nanoparticles into malignant cells by an external magnetic field. Prijic S; Scancar J; Romih R; Cemazar M; Bregar VB; Znidarsic A; Sersa G J Membr Biol; 2010 Jul; 236(1):167-79. PubMed ID: 20602230 [TBL] [Abstract][Full Text] [Related]
23. Tracking stem cells with superparamagnetic iron oxide nanoparticles: perspectives and considerations. Jasmin ; de Souza GT; Louzada RA; Rosado-de-Castro PH; Mendez-Otero R; Campos de Carvalho AC Int J Nanomedicine; 2017; 12():779-793. PubMed ID: 28182122 [TBL] [Abstract][Full Text] [Related]
24. New Frontiers in Molecular Imaging with Superparamagnetic Iron Oxide Nanoparticles (SPIONs): Efficacy, Toxicity, and Future Applications. Frantellizzi V; Conte M; Pontico M; Pani A; Pani R; De Vincentis G Nucl Med Mol Imaging; 2020 Apr; 54(2):65-80. PubMed ID: 32377258 [TBL] [Abstract][Full Text] [Related]
25. Selective anticancer activity of superparamagnetic iron oxide nanoparticles (SPIONs) against oral tongue cancer using in vitro methods: The key role of oxidative stress on cancerous mitochondria. Jahanbani J; Ghotbi M; Shahsavari F; Seydi E; Rahimi S; Pourahmad J J Biochem Mol Toxicol; 2020 Oct; 34(10):e22557. PubMed ID: 32583933 [TBL] [Abstract][Full Text] [Related]
26. Increased endocytosis rate and enhanced lysosomal pathway of silica-coated superparamagnetic nanoparticles into M-HeLa cells compared with cultured primary motor neurons. Sibgatullina G; Ramazanova I; Salnikov V; Stepanov A; Voloshina A; Sapunova A; Mustafina A; Petrov K; Samigullin D Histochem Cell Biol; 2024 Jun; 161(6):507-519. PubMed ID: 38597938 [TBL] [Abstract][Full Text] [Related]
27. In vitro and in vivo experiments with iron oxide nanoparticles functionalized with DEXTRAN or polyethylene glycol for medical applications: magnetic targeting. Mojica Pisciotti ML; Lima E; Vasquez Mansilla M; Tognoli VE; Troiani HE; Pasa AA; Creczynski-Pasa TB; Silva AH; Gurman P; Colombo L; Goya GF; Lamagna A; Zysler RD J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):860-8. PubMed ID: 24458920 [TBL] [Abstract][Full Text] [Related]
28. Superparamagnetic iron oxide nanoparticles: magnetic nanoplatforms as drug carriers. Wahajuddin ; Arora S Int J Nanomedicine; 2012; 7():3445-71. PubMed ID: 22848170 [TBL] [Abstract][Full Text] [Related]
29. QbD-driven development and characterization of superparamagnetic iron oxide nanoparticles (SPIONS) of a bone-targeting peptide for early detection of osteoporosis. Pant A; Singh G; Barnwal RP; Sharma T; Singh B Int J Pharm; 2024 Apr; 654():123936. PubMed ID: 38417727 [TBL] [Abstract][Full Text] [Related]
30. Effects of Iron-Oxide Nanoparticle Surface Chemistry on Uptake Kinetics and Cytotoxicity in CHO-K1 Cells. Hanot CC; Choi YS; Anani TB; Soundarrajan D; David AE Int J Mol Sci; 2015 Dec; 17(1):. PubMed ID: 26729108 [TBL] [Abstract][Full Text] [Related]
31. Colloidal stability of superparamagnetic iron oxide nanoparticles in the central nervous system: a review. Champagne PO; Westwick H; Bouthillier A; Sawan M Nanomedicine (Lond); 2018 Jun; 13(11):1385-1400. PubMed ID: 29949472 [TBL] [Abstract][Full Text] [Related]
32. Large-scale production of superparamagnetic iron oxide nanoparticles by flame spray pyrolysis: In vitro biological evaluation for biomedical applications. Estévez M; Cicuéndez M; Crespo J; Serrano-López J; Colilla M; Fernández-Acevedo C; Oroz-Mateo T; Rada-Leza A; González B; Izquierdo-Barba I; Vallet-Regí M J Colloid Interface Sci; 2023 Nov; 650(Pt A):560-572. PubMed ID: 37429163 [TBL] [Abstract][Full Text] [Related]
33. Effect of PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) under magnetic field on amyloid beta fibrillation process. Mirsadeghi S; Shanehsazzadeh S; Atyabi F; Dinarvand R Mater Sci Eng C Mater Biol Appl; 2016 Feb; 59():390-397. PubMed ID: 26652388 [TBL] [Abstract][Full Text] [Related]
34. Superparamagnetic iron oxide nanoparticles (SPIONs): development, surface modification and applications in chemotherapy. Mahmoudi M; Sant S; Wang B; Laurent S; Sen T Adv Drug Deliv Rev; 2011; 63(1-2):24-46. PubMed ID: 20685224 [TBL] [Abstract][Full Text] [Related]
35. Superparamagnetic nanoparticles for biomedical applications. Xiao Y; Du J J Mater Chem B; 2020 Jan; 8(3):354-367. PubMed ID: 31868197 [TBL] [Abstract][Full Text] [Related]
36. Coating influence on inner shell water exchange: An underinvestigated major contributor to SPIONs relaxation properties. Peng Y; Li Y; Li L; Xie M; Wang Y; Butch CJ Nanomedicine; 2023 Nov; 54():102713. PubMed ID: 37839694 [TBL] [Abstract][Full Text] [Related]
37. Biotechnological approach to induce human fibroblast apoptosis using superparamagnetic iron oxide nanoparticles. Ferraz FS; López JL; Lacerda SMSN; Procópio MS; Figueiredo AFA; Martins EMN; Guimarães PPG; Ladeira LO; Kitten GT; Dias FF; Domingues RZ; Costa GMJ J Inorg Biochem; 2020 May; 206():111017. PubMed ID: 32120160 [TBL] [Abstract][Full Text] [Related]
38. Recent developments in the synthesis, properties, and biomedical applications of core/shell superparamagnetic iron oxide nanoparticles with gold. Sabale S; Kandesar P; Jadhav V; Komorek R; Motkuri RK; Yu XY Biomater Sci; 2017 Oct; 5(11):2212-2225. PubMed ID: 28901350 [TBL] [Abstract][Full Text] [Related]
39. Superparamagnetic Iron Oxide Nanoparticles-Current and Prospective Medical Applications. Dulińska-Litewka J; Łazarczyk A; Hałubiec P; Szafrański O; Karnas K; Karewicz A Materials (Basel); 2019 Feb; 12(4):. PubMed ID: 30791358 [TBL] [Abstract][Full Text] [Related]
40. Selection of potential iron oxide nanoparticles for breast cancer treatment based on in vitro cytotoxicity and cellular uptake. Poller JM; Zaloga J; Schreiber E; Unterweger H; Janko C; Radon P; Eberbeck D; Trahms L; Alexiou C; Friedrich RP Int J Nanomedicine; 2017; 12():3207-3220. PubMed ID: 28458541 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]