These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

207 related articles for article (PubMed ID: 34512263)

  • 1. Electrophysiological Characterization of Regular and Burst Firing Pyramidal Neurons of the Dorsal Subiculum in an Angelman Syndrome Mouse Model.
    Rayi PR; Kaphzan H
    Front Cell Neurosci; 2021; 15():670998. PubMed ID: 34512263
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Resting and active properties of pyramidal neurons in subiculum and CA1 of rat hippocampus.
    Staff NP; Jung HY; Thiagarajan T; Yao M; Spruston N
    J Neurophysiol; 2000 Nov; 84(5):2398-408. PubMed ID: 11067982
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Target-specific output patterns are predicted by the distribution of regular-spiking and bursting pyramidal neurons in the subiculum.
    Kim Y; Spruston N
    Hippocampus; 2012 Apr; 22(4):693-706. PubMed ID: 21538658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chronic α1-Na/K-ATPase inhibition reverses the elongation of the axon initial segment of the hippocampal CA1 pyramidal neurons in Angelman syndrome model mice.
    Rayi PR; Bagrov AY; Kaphzan H
    Neuropsychopharmacology; 2021 Feb; 46(3):654-664. PubMed ID: 33214655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Burst Firing and Spatial Coding in Subicular Principal Cells.
    Simonnet J; Brecht M
    J Neurosci; 2019 May; 39(19):3651-3662. PubMed ID: 30819796
    [TBL] [Abstract][Full Text] [Related]  

  • 6. α1-Na/K-ATPase inhibition rescues aberrant dendritic calcium dynamics and memory deficits in the hippocampus of an Angelman syndrome mouse model.
    Rayi PR; Koyavski L; Chakraborty D; Bagrov A; Kaphzan H
    Prog Neurobiol; 2019 Nov; 182():101676. PubMed ID: 31401139
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Electrophysiological properties of neurons in the rat subiculum in vitro.
    Taube JS
    Exp Brain Res; 1993; 96(2):304-18. PubMed ID: 7903643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Limbic gamma rhythms. II. Synaptic and intrinsic mechanisms underlying spike doublets in oscillating subicular neurons.
    Stanford IM; Traub RD; Jefferys JG
    J Neurophysiol; 1998 Jul; 80(1):162-71. PubMed ID: 9658038
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Noncanonical, Dopamine-Dependent Long-Term Potentiation at Hippocampal Output Synapses in a Rodent Model of First-Episode Psychosis.
    Bartsch JC; Behr J
    Front Mol Neurosci; 2020; 13():55. PubMed ID: 32317931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differential participation of pyramidal cells in generation of spontaneous sharp wave-ripples in the mouse subiculum in vitro.
    Maslarova A; Lippmann K; Salar S; Rösler A; Heinemann U
    Neurobiol Learn Mem; 2015 Nov; 125():113-9. PubMed ID: 26318491
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Functional Diversity of Subicular Principal Cells during Hippocampal Ripples.
    Böhm C; Peng Y; Maier N; Winterer J; Poulet JF; Geiger JR; Schmitz D
    J Neurosci; 2015 Oct; 35(40):13608-18. PubMed ID: 26446215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Antidromic and orthodromic responses by subicular neurons in rat brain slices.
    Stewart M
    Brain Res; 1997 Sep; 769(1):71-85. PubMed ID: 9374275
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Status epilepticus induces chronic silencing of burster and dominance of regular firing neurons during sharp wave-ripples in the mouse subiculum.
    Lippmann K; Klaft ZJ; Salar S; Hollnagel JO; Valero M; Maslarova A
    Neurobiol Dis; 2022 Dec; 175():105929. PubMed ID: 36410634
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gating of hippocampal output by β-adrenergic receptor activation in the pilocarpine model of epilepsy.
    Grosser S; Hollnagel JO; Gilling KE; Bartsch JC; Heinemann U; Behr J
    Neuroscience; 2015 Feb; 286():325-37. PubMed ID: 25498224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transition in subicular burst firing neurons from epileptiform activity to suppressed state by feedforward inhibition.
    Sah N; Sikdar SK
    Eur J Neurosci; 2013 Aug; 38(4):2542-56. PubMed ID: 23725217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cholinergic receptor-independent modulation of intrinsic resonance in the rat subiculum neurons through inhibition of hyperpolarization-activated cyclic nucleotide-gated channels.
    Vasnik S; Sikdar SK
    Acta Physiol (Oxf); 2021 Apr; 231(4):e13603. PubMed ID: 33332740
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Repetitive firing and oscillatory activity of pyramidal-like bursting neurons in the rat subiculum.
    Mattia D; Kawasaki H; Avoli M
    Exp Brain Res; 1997 May; 114(3):507-17. PubMed ID: 9187287
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preictal activity of subicular, CA1, and dentate gyrus principal neurons in the dorsal hippocampus before spontaneous seizures in a rat model of temporal lobe epilepsy.
    Fujita S; Toyoda I; Thamattoor AK; Buckmaster PS
    J Neurosci; 2014 Dec; 34(50):16671-87. PubMed ID: 25505320
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Intrinsic connectivity of the rat subiculum: II. Properties of synchronous spontaneous activity and a demonstration of multiple generator regions.
    Harris E; Stewart M
    J Comp Neurol; 2001 Jul; 435(4):506-18. PubMed ID: 11406829
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cell-Type-Specific Changes in Intrinsic Excitability in the Subiculum following Learning and Exposure to Novel Environmental Contexts.
    Dunn AR; Neuner SM; Ding S; Hope KA; O'Connell KMS; Kaczorowski CC
    eNeuro; 2018; 5(6):. PubMed ID: 30627661
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.