These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 34512734)

  • 1. SCDRHA: A scRNA-Seq Data Dimensionality Reduction Algorithm Based on Hierarchical Autoencoder.
    Zhao J; Wang N; Wang H; Zheng C; Su Y
    Front Genet; 2021; 12():733906. PubMed ID: 34512734
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep structural clustering for single-cell RNA-seq data jointly through autoencoder and graph neural network.
    Gan Y; Huang X; Zou G; Zhou S; Guan J
    Brief Bioinform; 2022 Mar; 23(2):. PubMed ID: 35172334
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Single-cell RNA sequencing data analysis utilizing multi-type graph neural networks.
    Xu L; Li Z; Ren J; Liu S; Xu Y
    Comput Biol Med; 2024 Sep; 179():108921. PubMed ID: 39059210
    [TBL] [Abstract][Full Text] [Related]  

  • 4. scZAG: Integrating ZINB-Based Autoencoder with Adaptive Data Augmentation Graph Contrastive Learning for scRNA-seq Clustering.
    Zhang T; Ren J; Li L; Wu Z; Zhang Z; Dong G; Wang G
    Int J Mol Sci; 2024 May; 25(11):. PubMed ID: 38892162
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A deep adversarial variational autoencoder model for dimensionality reduction in single-cell RNA sequencing analysis.
    Lin E; Mukherjee S; Kannan S
    BMC Bioinformatics; 2020 Feb; 21(1):64. PubMed ID: 32085701
    [TBL] [Abstract][Full Text] [Related]  

  • 6. scBGEDA: deep single-cell clustering analysis via a dual denoising autoencoder with bipartite graph ensemble clustering.
    Wang Y; Yu Z; Li S; Bian C; Liang Y; Wong KC; Li X
    Bioinformatics; 2023 Feb; 39(2):. PubMed ID: 36734596
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dimensionality reduction and visualization of single-cell RNA-seq data with an improved deep variational autoencoder.
    Jiang J; Xu J; Liu Y; Song B; Guo X; Zeng X; Zou Q
    Brief Bioinform; 2023 May; 24(3):. PubMed ID: 37088976
    [TBL] [Abstract][Full Text] [Related]  

  • 8. scGAAC: A graph attention autoencoder for clustering single-cell RNA-sequencing data.
    Zhang L; Xiang H; Wang F; Chen Z; Shen M; Ma J; Liu H; Zheng H
    Methods; 2024 Sep; 229():115-124. PubMed ID: 38950719
    [TBL] [Abstract][Full Text] [Related]  

  • 9. scVGATAE: A Variational Graph Attentional Autoencoder Model for Clustering Single-Cell RNA-seq Data.
    Liu L; Wu X; Yu J; Zhang Y; Niu K; Yu A
    Biology (Basel); 2024 Sep; 13(9):. PubMed ID: 39336140
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Attention-based deep clustering method for scRNA-seq cell type identification.
    Li S; Guo H; Zhang S; Li Y; Li M
    PLoS Comput Biol; 2023 Nov; 19(11):e1011641. PubMed ID: 37948464
    [TBL] [Abstract][Full Text] [Related]  

  • 11. scLEGA: an attention-based deep clustering method with a tendency for low expression of genes on single-cell RNA-seq data.
    Liu Z; Liang Y; Wang G; Zhang T
    Brief Bioinform; 2024 Jul; 25(5):. PubMed ID: 39060167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Autoencoder-based cluster ensembles for single-cell RNA-seq data analysis.
    Geddes TA; Kim T; Nan L; Burchfield JG; Yang JYH; Tao D; Yang P
    BMC Bioinformatics; 2019 Dec; 20(Suppl 19):660. PubMed ID: 31870278
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A topology-preserving dimensionality reduction method for single-cell RNA-seq data using graph autoencoder.
    Luo Z; Xu C; Zhang Z; Jin W
    Sci Rep; 2021 Oct; 11(1):20028. PubMed ID: 34625592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. scGMAI: a Gaussian mixture model for clustering single-cell RNA-Seq data based on deep autoencoder.
    Yu B; Chen C; Qi R; Zheng R; Skillman-Lawrence PJ; Wang X; Ma A; Gu H
    Brief Bioinform; 2021 Jul; 22(4):. PubMed ID: 33300547
    [TBL] [Abstract][Full Text] [Related]  

  • 15. scCDG: A Method Based on DAE and GCN for scRNA-Seq Data Analysis.
    Wang HY; Zhao JP; Su YS; Zheng CH
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(6):3685-3694. PubMed ID: 34752401
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dimensionality Reduction of Single-Cell RNA Sequencing Data by Combining Entropy and Denoising AutoEncoder.
    Zhu X; Li J; Lin Y; Zhao L; Wang J; Peng X
    J Comput Biol; 2022 Oct; 29(10):1074-1084. PubMed ID: 35834604
    [No Abstract]   [Full Text] [Related]  

  • 17. VASC: Dimension Reduction and Visualization of Single-cell RNA-seq Data by Deep Variational Autoencoder.
    Wang D; Gu J
    Genomics Proteomics Bioinformatics; 2018 Oct; 16(5):320-331. PubMed ID: 30576740
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Denoising adaptive deep clustering with self-attention mechanism on single-cell sequencing data.
    Su Y; Lin R; Wang J; Tan D; Zheng C
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36715275
    [TBL] [Abstract][Full Text] [Related]  

  • 19. ScCAEs: deep clustering of single-cell RNA-seq via convolutional autoencoder embedding and soft K-means.
    Hu H; Li Z; Li X; Yu M; Pan X
    Brief Bioinform; 2022 Jan; 23(1):. PubMed ID: 34472585
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contrastive self-supervised clustering of scRNA-seq data.
    Ciortan M; Defrance M
    BMC Bioinformatics; 2021 May; 22(1):280. PubMed ID: 34044773
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.