These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 34513221)

  • 1. Fiber optic probe with functional polymer composites for hyperthermia.
    Hernández-Arenas A; Pimentel-Domínguez R; Rodrigo Vélez-Cordero J; Hernández-Cordero J
    Biomed Opt Express; 2021 Aug; 12(8):4730-4744. PubMed ID: 34513221
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fiber optic fluorescence temperature sensors using up-conversion from rare-earth polymer composites.
    Sánchez-Escobar S; Hernández-Cordero J
    Opt Lett; 2019 Mar; 44(5):1194-1197. PubMed ID: 30821746
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Luminescent Polymer Composites for Optical Fiber Sensors.
    Carrillo-Betancourt RA; López-Camero AD; Hernández-Cordero J
    Polymers (Basel); 2023 Jan; 15(3):. PubMed ID: 36771805
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microbubble generation using fiber optic tips coated with nanoparticles.
    Pimentel-Domínguez R; Hernández-Cordero J; Zenit R
    Opt Express; 2012 Apr; 20(8):8732-40. PubMed ID: 22513584
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intracranial hyperthermia through local photothermal heating with a fiberoptic microneedle device.
    Hood RL; Rossmeisl JH; Andriani RT; Wilkinson AR; Robertson JL; Rylander CG
    Lasers Surg Med; 2013 Mar; 45(3):167-74. PubMed ID: 23390044
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Photothermal behavior of an optical path adhesive used for photonics applications at 1550 nm.
    Derosa M; Logunov S
    Appl Opt; 2001 Dec; 40(36):6611-7. PubMed ID: 18364969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Artefacts in intracavitary temperature measurements during regional hyperthermia.
    Kok HP; Van den Berg CA; Van Haaren PM; Crezee J
    Phys Med Biol; 2007 Sep; 52(17):5157-71. PubMed ID: 17762078
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of power induced heating and damage in fiber optic probes for near-field scanning optical microscopy.
    Dickenson NE; Erickson ES; Mooren OL; Dunn RC
    Rev Sci Instrum; 2007 May; 78(5):053712. PubMed ID: 17552830
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Thermal monitoring during photothermia: hybrid probes for simultaneous plasmonic heating and near-infrared optical nanothermometry.
    Quintanilla M; García I; de Lázaro I; García-Alvarez R; Henriksen-Lacey M; Vranic S; Kostarelos K; Liz-Marzán LM
    Theranostics; 2019; 9(24):7298-7312. PubMed ID: 31695769
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fiber-optic control and thermometry of single-cell thermosensation logic.
    Fedotov IV; Safronov NA; Ermakova YG; Matlashov ME; Sidorov-Biryukov DA; Fedotov AB; Belousov VV; Zheltikov AM
    Sci Rep; 2015 Nov; 5():15737. PubMed ID: 26563494
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multifunctional Ceramic Composite System for Simultaneous Thermal Protection and Electromagnetic Interference Shielding for Carbon Fiber-Reinforced Polymer Composites.
    Jia Y; Ajayi TD; Wahls BH; Ramakrishnan KR; Ekkad S; Xu C
    ACS Appl Mater Interfaces; 2020 Dec; 12(52):58005-58017. PubMed ID: 33331159
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale steady-state temperature gradients within polymer nanocomposites undergoing continuous-wave photothermal heating from gold nanorods.
    Maity S; Wu WC; Tracy JB; Clarke LI; Bochinski JR
    Nanoscale; 2017 Aug; 9(32):11605-11618. PubMed ID: 28770914
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Validation of MR thermometry: method for temperature probe sensor registration accuracy in head and neck phantoms.
    Tarasek MR; Pellicer R; Hofstetter LW; Numan WC; Bakker JF; Kotek G; Togni P; Verhaart RF; Fiveland EW; Houston GC; van Rhoon GC; Paulides MM; Yeo DT
    Int J Hyperthermia; 2014 Mar; 30(2):142-9. PubMed ID: 24571177
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of high temperatures on a fiber-optic probe for temperature measurement.
    Milcent E; Olalde G; Robert JF; Hernandez D; Clement M
    Appl Opt; 1994 Sep; 33(25):5882-7. PubMed ID: 20935992
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Temperature measurements in high thermal gradients: I. The effects of conduction.
    Lyons BE; Samulski TV; Britt RH
    Int J Radiat Oncol Biol Phys; 1985 May; 11(5):951-62. PubMed ID: 3886610
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Wavelength-Dependent Photothermal Imaging Probes Nanoscale Temperature Differences among Subdiffraction Coupled Plasmonic Nanorods.
    Hosseini Jebeli SA; West CA; Lee SA; Goldwyn HJ; Bilchak CR; Fakhraai Z; Willets KA; Link S; Masiello DJ
    Nano Lett; 2021 Jun; 21(12):5386-5393. PubMed ID: 34061548
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Fiber-optic power limiter based on photothermal defocusing in an optical polymer.
    DeRosa ME; Logunov SL
    Appl Opt; 2003 May; 42(15):2683-8. PubMed ID: 12777003
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Are cold light sources really cold?
    Yavuz Y; Skogås JG; Güllüoğlu MG; Langø T; Mårvik R
    Surg Laparosc Endosc Percutan Tech; 2006 Oct; 16(5):370-6. PubMed ID: 17057587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved method for optical fiber temperature probe implantation in brains of free-moving rats.
    Musolino ST; Schartner EP; Hutchinson MR; Salem A
    J Neurosci Methods; 2019 Feb; 313():24-28. PubMed ID: 30578867
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fiber-optic thermometer application of thermal radiation from rare-earth end-doped SiO₂ fiber.
    Katsumata T; Morita K; Komuro S; Aizawa H
    Rev Sci Instrum; 2014 Aug; 85(8):084903. PubMed ID: 25173299
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.