BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

185 related articles for article (PubMed ID: 34513815)

  • 1. Dehydrogenation Mechanism of Three Stereoisomers of Butane-2,3-Diol in
    Liu Y; Wang X; Ma L; Lü M; Zhang W; Lü C; Gao C; Xu P; Ma C
    Front Bioeng Biotechnol; 2021; 9():728767. PubMed ID: 34513815
    [No Abstract]   [Full Text] [Related]  

  • 2. Functional Role of Lanthanides in Enzymatic Activity and Transcriptional Regulation of Pyrroloquinoline Quinone-Dependent Alcohol Dehydrogenases in
    Wehrmann M; Billard P; Martin-Meriadec A; Zegeye A; Klebensberger J
    mBio; 2017 Jun; 8(3):. PubMed ID: 28655819
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutagenicity of stereochemical configurations of 1,3-butadiene epoxy metabolites in human cells.
    Meng RQ; Hackfeld LC; Hedge RP; Wisse LA; Redetzke DL; Walker VE;
    Res Rep Health Eff Inst; 2010 Jun; (150):1-34; discussion 35-41. PubMed ID: 20853577
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Integration of ARTP Mutation and Adaptive Laboratory Evolution to Reveal 1,4-Butanediol Degradation in Pseudomonas putida KT2440.
    Qian X; Xin K; Zhang L; Zhou J; Xu A; Dong W; Jiang M
    Microbiol Spectr; 2023 Jun; 11(3):e0498822. PubMed ID: 37067433
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Cellular Response to Lanthanum Is Substrate Specific and Reveals a Novel Route for Glycerol Metabolism in Pseudomonas putida KT2440.
    Wehrmann M; Toussaint M; Pfannstiel J; Billard P; Klebensberger J
    mBio; 2020 Apr; 11(2):. PubMed ID: 32345644
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of the molecular response of Pseudomonas putida KT2440 to the next-generation biofuel n-butanol.
    Simon O; Klebensberger J; Mükschel B; Klaiber I; Graf N; Altenbuchner J; Huber A; Hauer B; Pfannstiel J
    J Proteomics; 2015 Jun; 122():11-25. PubMed ID: 25829261
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of Escherichia coli for production of (2S,3S)-butane-2,3-diol from glucose.
    Chu H; Xin B; Liu P; Wang Y; Li L; Liu X; Zhang X; Ma C; Xu P; Gao C
    Biotechnol Biofuels; 2015; 8():143. PubMed ID: 26379775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The PedS2/PedR2 Two-Component System Is Crucial for the Rare Earth Element Switch in Pseudomonas putida KT2440.
    Wehrmann M; Berthelot C; Billard P; Klebensberger J
    mSphere; 2018 Aug; 3(4):. PubMed ID: 30158283
    [TBL] [Abstract][Full Text] [Related]  

  • 9. 2,3-Butanediol catabolism in Pseudomonas aeruginosa PAO1.
    Liu Q; Liu Y; Kang Z; Xiao D; Gao C; Xu P; Ma C
    Environ Microbiol; 2018 Nov; 20(11):3927-3940. PubMed ID: 30058099
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Integrated analysis of gene expression and metabolic fluxes in PHA-producing Pseudomonas putida grown on glycerol.
    Beckers V; Poblete-Castro I; Tomasch J; Wittmann C
    Microb Cell Fact; 2016 May; 15():73. PubMed ID: 27142075
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering Pseudomonas putida KT2440 to convert 2,3-butanediol to mevalonate.
    Yang J; Im Y; Kim TH; Lee MJ; Cho S; Na JG; Lee J; Oh BK
    Enzyme Microb Technol; 2020 Jan; 132():109437. PubMed ID: 31731966
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of (3R)-acetoin and 2,3-butanediol isomers by metabolically engineered Lactococcus lactis.
    Kandasamy V; Liu J; Dantoft SH; Solem C; Jensen PR
    Sci Rep; 2016 Nov; 6():36769. PubMed ID: 27857195
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Insights into the genomic basis of niche specificity of Pseudomonas putida KT2440.
    Dos Santos VA; Heim S; Moore ER; Strätz M; Timmis KN
    Environ Microbiol; 2004 Dec; 6(12):1264-86. PubMed ID: 15560824
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Construction of T7-Like Expression System in
    Liang T; Sun J; Ju S; Su S; Yang L; Wu J
    Front Chem; 2021; 9():664967. PubMed ID: 34336782
    [No Abstract]   [Full Text] [Related]  

  • 15. Ethylene glycol metabolism by Pseudomonas putida.
    Mückschel B; Simon O; Klebensberger J; Graf N; Rosche B; Altenbuchner J; Pfannstiel J; Huber A; Hauer B
    Appl Environ Microbiol; 2012 Dec; 78(24):8531-9. PubMed ID: 23023748
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficient (3S)-Acetoin and (2S,3S)-2,3-Butanediol Production from meso-2,3-Butanediol Using Whole-Cell Biocatalysis.
    He Y; Chen F; Sun M; Gao H; Guo Z; Lin H; Chen J; Jin W; Yang Y; Zhang L; Yuan J
    Molecules; 2018 Mar; 23(3):. PubMed ID: 29562693
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Engineering Pseudomonas putida for improved utilization of syringyl aromatics.
    Mueller J; Willett H; Feist AM; Niu W
    Biotechnol Bioeng; 2022 Sep; 119(9):2541-2550. PubMed ID: 35524438
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Unravelling the thioesterases responsible for propionate formation in engineered Pseudomonas putida KT2440.
    Ma C; Shi Y; Mu Q; Li R; Xue Y; Yu B
    Microb Biotechnol; 2021 May; 14(3):1237-1242. PubMed ID: 33739583
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic engineering of Pseudomonas putida KT2440 for medium-chain-length fatty alcohol and ester production from fatty acids.
    Lu C; Akwafo EO; Wijffels RH; Martins Dos Santos VAP; Weusthuis RA
    Metab Eng; 2023 Jan; 75():110-118. PubMed ID: 36494025
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering a newly isolated Bacillus licheniformis strain for the production of (2R,3R)-butanediol.
    Song CW; Chelladurai R; Park JM; Song H
    J Ind Microbiol Biotechnol; 2020 Jan; 47(1):97-108. PubMed ID: 31758412
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.