BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

189 related articles for article (PubMed ID: 34513940)

  • 1. Deep Learning Analysis of Echocardiographic Images to Predict Positive Genotype in Patients With Hypertrophic Cardiomyopathy.
    Morita SX; Kusunose K; Haga A; Sata M; Hasegawa K; Raita Y; Reilly MP; Fifer MA; Maurer MS; Shimada YJ
    Front Cardiovasc Med; 2021; 8():669860. PubMed ID: 34513940
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Deep learning algorithm to improve hypertrophic cardiomyopathy mutation prediction using cardiac cine images.
    Zhou H; Li L; Liu Z; Zhao K; Chen X; Lu M; Yin G; Song L; Zhao S; Zheng H; Tian J
    Eur Radiol; 2021 Jun; 31(6):3931-3940. PubMed ID: 33241513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Prediction of Genotype Positivity in Patients With Hypertrophic Cardiomyopathy Using Machine Learning.
    Liang LW; Fifer MA; Hasegawa K; Maurer MS; Reilly MP; Shimada YJ
    Circ Genom Precis Med; 2021 Jun; 14(3):e003259. PubMed ID: 33890823
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deep learning-derived 12-lead electrocardiogram-based genotype prediction for hypertrophic cardiomyopathy: a pilot study.
    Chen L; Fu G; Jiang C
    Ann Med; 2023 Dec; 55(1):2235564. PubMed ID: 37467172
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hypertrophic Cardiomyopathy Genotype Prediction Models in a Pediatric Population.
    Newman R; Jefferies JL; Chin C; He H; Shikany A; Miller EM; Parrott A
    Pediatr Cardiol; 2018 Apr; 39(4):709-717. PubMed ID: 29362845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Early changes in apical rotation in genotype positive children with hypertrophic cardiomyopathy mutations without hypertrophic changes on two-dimensional imaging.
    Forsey J; Benson L; Rozenblyum E; Friedberg MK; Mertens L
    J Am Soc Echocardiogr; 2014 Feb; 27(2):215-21. PubMed ID: 24325958
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Computer-aided diagnosis of prostate cancer using a deep convolutional neural network from multiparametric MRI.
    Song Y; Zhang YD; Yan X; Liu H; Zhou M; Hu B; Yang G
    J Magn Reson Imaging; 2018 Dec; 48(6):1570-1577. PubMed ID: 29659067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of a phenotype-based genetic test prediction score for unrelated patients with hypertrophic cardiomyopathy.
    Bos JM; Will ML; Gersh BJ; Kruisselbrink TM; Ommen SR; Ackerman MJ
    Mayo Clin Proc; 2014 Jun; 89(6):727-37. PubMed ID: 24793961
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential diagnosis of common etiologies of left ventricular hypertrophy using a hybrid CNN-LSTM model.
    Hwang IC; Choi D; Choi YJ; Ju L; Kim M; Hong JE; Lee HJ; Yoon YE; Park JB; Lee SP; Kim HK; Kim YJ; Cho GY
    Sci Rep; 2022 Dec; 12(1):20998. PubMed ID: 36470931
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Deep Learning Approach for Assessment of Regional Wall Motion Abnormality From Echocardiographic Images.
    Kusunose K; Abe T; Haga A; Fukuda D; Yamada H; Harada M; Sata M
    JACC Cardiovasc Imaging; 2020 Feb; 13(2 Pt 1):374-381. PubMed ID: 31103590
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Deep learning with ultrasonography: automated classification of liver fibrosis using a deep convolutional neural network.
    Lee JH; Joo I; Kang TW; Paik YH; Sinn DH; Ha SY; Kim K; Choi C; Lee G; Yi J; Bang WC
    Eur Radiol; 2020 Feb; 30(2):1264-1273. PubMed ID: 31478087
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A Validation Study of the Mayo Clinic Phenotype-Based Genetic Test Prediction Score for Japanese Patients With Hypertrophic Cardiomyopathy.
    Moriki T; Kubo T; Sugiura K; Ochi Y; Baba Y; Hirota T; Yamasaki N; Kimura A; Doi YL; Kitaoka H
    Circ J; 2021 Apr; 85(5):669-674. PubMed ID: 33487615
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evaluation of the Mayo Clinic Phenotype-Based Genotype Predictor Score in Patients with Clinically Diagnosed Hypertrophic Cardiomyopathy.
    Murphy SL; Anderson JH; Kapplinger JD; Kruisselbrink TM; Gersh BJ; Ommen SR; Ackerman MJ; Bos JM
    J Cardiovasc Transl Res; 2016 Apr; 9(2):153-61. PubMed ID: 26914223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Detection of hypertrophic cardiomyopathy by an artificial intelligence electrocardiogram in children and adolescents.
    Siontis KC; Liu K; Bos JM; Attia ZI; Cohen-Shelly M; Arruda-Olson AM; Zanjirani Farahani N; Friedman PA; Noseworthy PA; Ackerman MJ
    Int J Cardiol; 2021 Oct; 340():42-47. PubMed ID: 34419527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The utility of the Mayo Score for predicting the yield of genetic testing in patients with hypertrophic cardiomyopathy.
    Bonaventura J; Norambuena P; Tomašov P; Jindrová D; Šedivá H; Macek M; Veselka J
    Arch Med Sci; 2019 May; 15(3):641-649. PubMed ID: 31110529
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Toronto hypertrophic cardiomyopathy genotype score for prediction of a positive genotype in hypertrophic cardiomyopathy.
    Gruner C; Ivanov J; Care M; Williams L; Moravsky G; Yang H; Laczay B; Siminovitch K; Woo A; Rakowski H
    Circ Cardiovasc Genet; 2013 Feb; 6(1):19-26. PubMed ID: 23239831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Predicting value of 2014 European guidelines risk prediction model for sudden cardiac death (HCM Risk-SCD) in Chinese patients with hypertrophic cardiomyopathy].
    Li WX; Liu LW; Wang J; Zuo L; Yang F; Kang N; Lei CH
    Zhonghua Xin Xue Guan Bing Za Zhi; 2017 Dec; 45(12):1033-1038. PubMed ID: 29325362
    [No Abstract]   [Full Text] [Related]  

  • 18. A deep learning approach for the automatic recognition of prosthetic mitral valve in echocardiographic images.
    Vafaeezadeh M; Behnam H; Hosseinsabet A; Gifani P
    Comput Biol Med; 2021 Jun; 133():104388. PubMed ID: 33864972
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning-based detection and classification of geographic atrophy using a deep convolutional neural network classifier.
    Treder M; Lauermann JL; Eter N
    Graefes Arch Clin Exp Ophthalmol; 2018 Nov; 256(11):2053-2060. PubMed ID: 30091055
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Automated Facial Recognition for Noonan Syndrome Using Novel Deep Convolutional Neural Network With Additive Angular Margin Loss.
    Yang H; Hu XR; Sun L; Hong D; Zheng YY; Xin Y; Liu H; Lin MY; Wen L; Liang DP; Wang SS
    Front Genet; 2021; 12():669841. PubMed ID: 34163525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.