These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
340 related articles for article (PubMed ID: 34513992)
1. Biomarker Extraction Based on Subspace Learning for the Prediction of Mild Cognitive Impairment Conversion. Li Y; Fang Y; Wang J; Zhang H; Hu B Biomed Res Int; 2021; 2021():5531940. PubMed ID: 34513992 [TBL] [Abstract][Full Text] [Related]
3. A Classification Algorithm by Combination of Feature Decomposition and Kernel Discriminant Analysis (KDA) for Automatic MR Brain Image Classification and AD Diagnosis. Elahifasaee F; Li F; Yang M Comput Math Methods Med; 2019; 2019():1437123. PubMed ID: 32082407 [TBL] [Abstract][Full Text] [Related]
4. A Novel Grading Biomarker for the Prediction of Conversion From Mild Cognitive Impairment to Alzheimer's Disease. Tong T; Gao Q; Guerrero R; Ledig C; Chen L; Rueckert D; Initiative ADN IEEE Trans Biomed Eng; 2017 Jan; 64(1):155-165. PubMed ID: 27046891 [TBL] [Abstract][Full Text] [Related]
5. A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease. Spasov S; Passamonti L; Duggento A; Liò P; Toschi N; Neuroimage; 2019 Apr; 189():276-287. PubMed ID: 30654174 [TBL] [Abstract][Full Text] [Related]
6. Random forest feature selection, fusion and ensemble strategy: Combining multiple morphological MRI measures to discriminate among healhy elderly, MCI, cMCI and alzheimer's disease patients: From the alzheimer's disease neuroimaging initiative (ADNI) database. Dimitriadis SI; Liparas D; Tsolaki MN; J Neurosci Methods; 2018 May; 302():14-23. PubMed ID: 29269320 [TBL] [Abstract][Full Text] [Related]
8. Classification of Alzheimer's disease and prediction of mild cognitive impairment-to-Alzheimer's conversion from structural magnetic resource imaging using feature ranking and a genetic algorithm. Beheshti I; Demirel H; Matsuda H; Comput Biol Med; 2017 Apr; 83():109-119. PubMed ID: 28260614 [TBL] [Abstract][Full Text] [Related]
9. Modelling prognostic trajectories of cognitive decline due to Alzheimer's disease. Giorgio J; Landau SM; Jagust WJ; Tino P; Kourtzi Z; Neuroimage Clin; 2020; 26():102199. PubMed ID: 32106025 [TBL] [Abstract][Full Text] [Related]
10. Using machine learning to quantify structural MRI neurodegeneration patterns of Alzheimer's disease into dementia score: Independent validation on 8,834 images from ADNI, AIBL, OASIS, and MIRIAD databases. Popuri K; Ma D; Wang L; Beg MF Hum Brain Mapp; 2020 Oct; 41(14):4127-4147. PubMed ID: 32614505 [TBL] [Abstract][Full Text] [Related]
11. Ensemble of random forests One vs. Rest classifiers for MCI and AD prediction using ANOVA cortical and subcortical feature selection and partial least squares. Ramírez J; Górriz JM; Ortiz A; Martínez-Murcia FJ; Segovia F; Salas-Gonzalez D; Castillo-Barnes D; Illán IA; Puntonet CG; J Neurosci Methods; 2018 May; 302():47-57. PubMed ID: 29242123 [TBL] [Abstract][Full Text] [Related]
12. Locally linear embedding (LLE) for MRI based Alzheimer's disease classification. Liu X; Tosun D; Weiner MW; Schuff N; Neuroimage; 2013 Dec; 83():148-57. PubMed ID: 23792982 [TBL] [Abstract][Full Text] [Related]
13. Local MRI analysis approach in the diagnosis of early and prodromal Alzheimer's disease. Chincarini A; Bosco P; Calvini P; Gemme G; Esposito M; Olivieri C; Rei L; Squarcia S; Rodriguez G; Bellotti R; Cerello P; De Mitri I; Retico A; Nobili F; Neuroimage; 2011 Sep; 58(2):469-80. PubMed ID: 21718788 [TBL] [Abstract][Full Text] [Related]
14. A Machine Learning-Based Holistic Approach to Predict the Clinical Course of Patients within the Alzheimer's Disease Spectrum. Massetti N; Russo M; Franciotti R; Nardini D; Mandolini GM; Granzotto A; Bomba M; Delli Pizzi S; Mosca A; Scherer R; Onofrj M; Sensi SL; ; J Alzheimers Dis; 2022; 85(4):1639-1655. PubMed ID: 34958014 [TBL] [Abstract][Full Text] [Related]
15. Domain Transfer Learning for MCI Conversion Prediction. Cheng B; Liu M; Zhang D; Munsell BC; Shen D IEEE Trans Biomed Eng; 2015 Jul; 62(7):1805-1817. PubMed ID: 25751861 [TBL] [Abstract][Full Text] [Related]
16. Multi-modality sparse representation-based classification for Alzheimer's disease and mild cognitive impairment. Xu L; Wu X; Chen K; Yao L Comput Methods Programs Biomed; 2015 Nov; 122(2):182-90. PubMed ID: 26298855 [TBL] [Abstract][Full Text] [Related]
17. A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease. Liu M; Li F; Yan H; Wang K; Ma Y; ; Shen L; Xu M Neuroimage; 2020 Mar; 208():116459. PubMed ID: 31837471 [TBL] [Abstract][Full Text] [Related]
18. Prediction of Progressive Mild Cognitive Impairment by Multi-Modal Neuroimaging Biomarkers. Xu L; Wu X; Li R; Chen K; Long Z; Zhang J; Guo X; Yao L; J Alzheimers Dis; 2016; 51(4):1045-56. PubMed ID: 26923024 [TBL] [Abstract][Full Text] [Related]
19. Differential diagnosis of mild cognitive impairment and Alzheimer's disease using structural MRI cortical thickness, hippocampal shape, hippocampal texture, and volumetry. Sørensen L; Igel C; Pai A; Balas I; Anker C; Lillholm M; Nielsen M; Neuroimage Clin; 2017; 13():470-482. PubMed ID: 28119818 [TBL] [Abstract][Full Text] [Related]
20. Structural, static, and dynamic functional MRI predictors for conversion from mild cognitive impairment to Alzheimer's disease: Inter-cohort validation of Shanghai Memory Study and ADNI. Chen Z; Chen K; Li Y; Geng D; Li X; Liang X; Lu H; Ding S; Xiao Z; Ma X; Zheng L; Ding D; Zhao Q; Yang L; Hum Brain Mapp; 2024 Jan; 45(1):e26529. PubMed ID: 37991144 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]