BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 34514238)

  • 1. Fabrication of Highly Interconnected Poly(ε-caprolactone)/cellulose Nanofiber Composite Foams by Microcellular Foaming and Leaching Processes.
    Li J; Wang H; Zhou H; Jiang J; Wang X; Li Q
    ACS Omega; 2021 Sep; 6(35):22672-22680. PubMed ID: 34514238
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fabrication of fibrillated and interconnected porous poly(ε-caprolactone) vascular tissue engineering scaffolds by microcellular foaming and polymer leaching.
    Hou J; Jiang J; Guo H; Guo X; Wang X; Shen Y; Li Q
    RSC Adv; 2020 Mar; 10(17):10055-10066. PubMed ID: 35498611
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical, Crystallization, Rheological, and Supercritical CO
    Chen Z; Yin X; Chen H; Fu X; Sun Y; Chen Q; Liu W; Shen X
    Polymers (Basel); 2023 Dec; 16(1):. PubMed ID: 38201693
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Technical development and application of supercritical CO
    Zhou Y; Tian Y; Zhang M
    Sci Rep; 2024 Mar; 14(1):6825. PubMed ID: 38514733
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High-Expansion Open-Cell Polylactide Foams Prepared by Microcellular Foaming Based on Stereocomplexation Mechanism with Outstanding Oil-Water Separation.
    Li D; Zhang S; Zhao Z; Miao Z; Zhang G; Shi X
    Polymers (Basel); 2023 Apr; 15(9):. PubMed ID: 37177130
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Foaming of PCL-Based Composites Using scCO
    Kosowska K; Krzysztoforski J; Henczka M
    Materials (Basel); 2022 Feb; 15(3):. PubMed ID: 35161113
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solvent-Free Processing of Drug-Loaded Poly(ε-Caprolactone) Scaffolds with Tunable Macroporosity by Combination of Supercritical Foaming and Thermal Porogen Leaching.
    Santos-Rosales V; Ardao I; Goimil L; Gomez-Amoza JL; García-González CA
    Polymers (Basel); 2021 Jan; 13(1):. PubMed ID: 33406680
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Foaming of PCL-Based Composites Using scCO
    Kosowska K; Krzysztoforski J; Henczka M
    Materials (Basel); 2022 May; 15(11):. PubMed ID: 35683156
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of PCL Scaffolds by Supercritical CO
    Song C; Luo Y; Liu Y; Li S; Xi Z; Zhao L; Cen L; Lu E
    Polymers (Basel); 2020 Apr; 12(4):. PubMed ID: 32252222
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fabrication of three-dimensional polyetherimide bead foams
    Feng D; Li L; Wang Q
    RSC Adv; 2019 Jan; 9(7):4072-4081. PubMed ID: 35518111
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Cellulose Nanofiber (CNF) Surface Treatment on Cellular Structures and Mechanical Properties of Polypropylene/CNF Nanocomposite Foams via Core-Back Foam Injection Molding.
    Wang L; Okada K; Hikima Y; Ohshima M; Sekiguchi T; Yano H
    Polymers (Basel); 2019 Feb; 11(2):. PubMed ID: 30960233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Open-pore biodegradable foams prepared via gas foaming and microparticulate templating.
    Salerno A; Iannace S; Netti PA
    Macromol Biosci; 2008 Jul; 8(7):655-64. PubMed ID: 18350540
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Novel Fabricating Process for Porous Polyglycolic Acid Scaffolds by Melt-Foaming Using Supercritical Carbon Dioxide.
    Zhang J; Yang S; Yang X; Xi Z; Zhao L; Cen L; Lu E; Yang Y
    ACS Biomater Sci Eng; 2018 Feb; 4(2):694-706. PubMed ID: 33418757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In Situ Nanofibrillar Polypropylene-Based Composite Microcellular Foams with Enhanced Mechanical and Flame-Retardant Performances.
    Jiang Y; Jiang J; Yang L; Zhang Y; Wang X; Zhao N; Hou J; Li Q
    Polymers (Basel); 2023 Mar; 15(6):. PubMed ID: 36987279
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Insights into heterogeneous surface induced bubble nucleation mechanisms in cellulose reinforced polylactic acid foams.
    Ji E; Zhou H; Xu G; Wang X; Wang L; Gao J; Yan J
    Int J Biol Macromol; 2024 May; 268(Pt 1):131659. PubMed ID: 38641275
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined compression molding, heating, and leaching process for fabrication of micro-porous poly(ε-caprolactone) scaffolds.
    Sempertegui ND; Narkhede AA; Thomas V; Rao SS
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):1978-1993. PubMed ID: 30220215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A new promising nucleating agent for polymer foaming: effects of hollow molecular-sieve particles on polypropylene supercritical CO
    Yang C; Wang M; Xing Z; Zhao Q; Wang M; Wu G
    RSC Adv; 2018 May; 8(36):20061-20067. PubMed ID: 35541683
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Fabrication of Poly(butylene succinate)/Carbon Black Nanocomposite Foams with Good Electrical Conductivity and High Strength by a Supercritical CO
    Chen Z; Hu J; Ju J; Kuang T
    Polymers (Basel); 2019 Nov; 11(11):. PubMed ID: 31717678
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Fabrication of bimodal open-porous poly (butylene succinate)/cellulose nanocrystals composite scaffolds for tissue engineering application.
    Ju J; Gu Z; Liu X; Zhang S; Peng X; Kuang T
    Int J Biol Macromol; 2020 Mar; 147():1164-1173. PubMed ID: 31751685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Foaming Behavior and Microcellular Morphologies of Incompatible SAN/CPE Blends with Supercritical Carbon Dioxide as a Physical Blowing Agent.
    Zhang HC; Yu CN; Liang Y; Lin GX; Meng C
    Polymers (Basel); 2019 Jan; 11(1):. PubMed ID: 30960075
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.