These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 34514243)

  • 1. Determination of Metallic Impurities in Carbon Nanotubes by Glow Discharge Mass Spectrometry.
    Grinberg P; Methven BAJ; Swider K; Mester Z
    ACS Omega; 2021 Sep; 6(35):22717-22725. PubMed ID: 34514243
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rapid and quantitative analysis of impurities in silicon powders by glow discharge mass spectrometry.
    Zhang J; Zhou T; Tang Y; Cui Y; Song D
    Anal Bioanal Chem; 2018 Nov; 410(27):7195-7201. PubMed ID: 30178082
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative analysis of metal impurities in carbon nanotubes: efficacy of different pretreatment protocols for ICPMS spectroscopy.
    Ge C; Lao F; Li W; Li Y; Chen C; Qiu Y; Mao X; Li B; Chai Z; Zhao Y
    Anal Chem; 2008 Dec; 80(24):9426-34. PubMed ID: 18998708
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An evaluation of microwave-assisted fusion and microwave-assisted acid digestion methods for determining elemental impurities in carbon nanostructures using inductively coupled plasma optical emission spectrometry.
    Patole SP; Simões F; Yapici TF; Warsama BH; Anjum DH; Costa PM
    Talanta; 2016 Feb; 148():94-100. PubMed ID: 26653428
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Determination of Metal Impurities in Carbon Nanotubes Sampled Using Surface Wipes.
    Avramescu ML; Rasmussen PE; Chénier M
    J Anal Methods Chem; 2016; 2016():3834292. PubMed ID: 27974992
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detection of Carbon Nanotubes in Indoor Workplaces Using Elemental Impurities.
    Rasmussen PE; Avramescu ML; Jayawardene I; Gardner HD
    Environ Sci Technol; 2015 Nov; 49(21):12888-96. PubMed ID: 26451679
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Significance and systematic analysis of metallic impurities of carbon nanotubes produced by different manufacturers.
    Ge C; Li W; Li Y; Li B; Du J; Qiu Y; Liu Y; Gao Y; Chai Z; Chen C
    J Nanosci Nanotechnol; 2011 Mar; 11(3):2389-97. PubMed ID: 21449398
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Carbon Nanotube Emissions from Arc Discharge Production: Classification of Particle Types with Electron Microscopy and Comparison with Direct Reading Techniques.
    Ludvigsson L; Isaxon C; Nilsson PT; Tinnerberg H; Messing ME; Rissler J; Skaug V; Gudmundsson A; Bohgard M; Hedmer M; Pagels J
    Ann Occup Hyg; 2016 May; 60(4):493-512. PubMed ID: 26748380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exposure and emission measurements during production, purification, and functionalization of arc-discharge-produced multi-walled carbon nanotubes.
    Hedmer M; Isaxon C; Nilsson PT; Ludvigsson L; Messing ME; Genberg J; Skaug V; Bohgard M; Tinnerberg H; Pagels JH
    Ann Occup Hyg; 2014 Apr; 58(3):355-79. PubMed ID: 24389082
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards an ultrasensitive method for the determination of metal impurities in carbon nanotubes.
    Kolodiazhnyi T; Pumera M
    Small; 2008 Sep; 4(9):1476-84. PubMed ID: 18680097
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Determination of inorganic contaminants in carbon nanotubes by plasma-based techniques: Overcoming the limitations of sample preparation.
    Krzyzaniak SR; Iop GD; Holkem AP; Flores EMM; Mello PA
    Talanta; 2019 Jan; 192():255-262. PubMed ID: 30348387
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A review of carbon nanotube toxicity and assessment of potential occupational and environmental health risks.
    Lam CW; James JT; McCluskey R; Arepalli S; Hunter RL
    Crit Rev Toxicol; 2006 Mar; 36(3):189-217. PubMed ID: 16686422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytotoxicity of carbon nanotube variants: a comparative in vitro exposure study with A549 epithelial and J774 macrophage cells.
    Kumarathasan P; Breznan D; Das D; Salam MA; Siddiqui Y; MacKinnon-Roy C; Guan J; de Silva N; Simard B; Vincent R
    Nanotoxicology; 2015 Mar; 9(2):148-61. PubMed ID: 24713075
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Direct determination of bioavailable molybdenum in carbon nanotubes.
    Giovanni M; Ambrosi A; Pumera M
    Chemistry; 2011 Feb; 17(6):1806-10. PubMed ID: 21274931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Bioavailability of metallic impurities in carbon nanotubes is greatly enhanced by ultrasonication.
    Toh RJ; Ambrosi A; Pumera M
    Chemistry; 2012 Sep; 18(37):11593-6. PubMed ID: 22865345
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Impurities within carbon nanotubes govern the electrochemical oxidation of substituted hydrazines.
    Stuart EJ; Pumera M
    Phys Chem Chem Phys; 2011 Jun; 13(22):10818-22. PubMed ID: 21556440
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Purification of carbon nanotubes by high temperature chlorine gas treatment.
    Chng EL; Poh HL; Sofer Z; Pumera M
    Phys Chem Chem Phys; 2013 Apr; 15(15):5615-9. PubMed ID: 23471202
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Purification of multi-walled carbon nanotubes.
    Pillai SK; Ray SS; Moodley M
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6187-207. PubMed ID: 19205185
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Statistical length measurement method by direct imaging of carbon nanotubes.
    Bengio EA; Tsentalovich DE; Behabtu N; Kleinerman O; Kesselman E; Schmidt J; Talmon Y; Pasquali M
    ACS Appl Mater Interfaces; 2014 May; 6(9):6139-46. PubMed ID: 24773046
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The significant role of carboxylated carbonaceous fragments in the electrochemistry of carbon nanotubes.
    Ma X; Jia L; Zhang L; Zhu L
    Chemistry; 2014 Apr; 20(14):4072-6. PubMed ID: 24616146
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.