These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34514249)

  • 1. Strain Hardening in Graphene Foams under Shear.
    Yang T; Wang C; Wu Z
    ACS Omega; 2021 Sep; 6(35):22780-22790. PubMed ID: 34514249
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The mechanical response and microscopic deformation mechanism of graphene foams tuned by long carbon nanotubes and short crosslinkers.
    Wang S; Yang T; Wang C; Liang L
    Phys Chem Chem Phys; 2022 Dec; 25(1):192-202. PubMed ID: 36484421
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanical Properties and Deformation Mechanisms of Graphene Foams with Bi-Modal Sheet Thickness by Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Wang C
    Materials (Basel); 2021 Sep; 14(19):. PubMed ID: 34640013
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Microscopic deformation mechanism and main influencing factors of carbon nanotube coated graphene foams under uniaxial compression.
    Wang S; Wang C; Khan MB; Chen S
    Nanotechnology; 2021 Jun; 32(34):. PubMed ID: 34081029
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Viscoelastic Properties of Graphene Foams Using Dynamic Mechanical Analysis and Coarse-Grained Molecular Dynamics Simulations.
    Liu S; Lyu M; Yang C; Jiang M; Wang C
    Materials (Basel); 2023 Mar; 16(6):. PubMed ID: 36984337
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size of graphene sheets determines the structural and mechanical properties of 3D graphene foams.
    Shen Z; Ye H; Zhou C; Kröger M; Li Y
    Nanotechnology; 2018 Mar; 29(10):104001. PubMed ID: 29311421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Conductivity Maximum in 3D Graphene Foams.
    Liu F; Wang C; Tang Q
    Small; 2018 Aug; 14(32):e1801458. PubMed ID: 30015367
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and Dynamics of a Graphene Melt.
    Xia W; Vargas-Lara F; Keten S; Douglas JF
    ACS Nano; 2018 Jun; 12(6):5427-5435. PubMed ID: 29787245
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Syntactic Iron Foams' Properties Tailored by Means of Case Hardening via Carburizing or Carbonitriding.
    Weise J; Lehmhus D; Sandfuchs J; Steinbacher M; Fechte-Heinen R; Busse M
    Materials (Basel); 2021 Aug; 14(16):. PubMed ID: 34442879
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mechanical and Viscoelastic Properties of Wrinkled Graphene Reinforced Polymer Nanocomposites - Effect of Interlayer Sliding within Graphene Sheets.
    Wang Y; Meng Z
    Carbon N Y; 2021 Jun; 177():128-137. PubMed ID: 33776064
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Strain-hardening and suppression of shear-banding in rejuvenated bulk metallic glass.
    Pan J; Ivanov YP; Zhou WH; Li Y; Greer AL
    Nature; 2020 Feb; 578(7796):559-562. PubMed ID: 32103194
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Interfacial Cross-Linking in Graphene-Derived Materials, Which Balances Intralayer and Interlayer Load Transfer.
    Gao E; Cao Y; Liu Y; Xu Z
    ACS Appl Mater Interfaces; 2017 Jul; 9(29):24830-24839. PubMed ID: 28677388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Mechanical and Viscoelastic Properties of Graphene Reinforced Polycarbonate Nanocomposites Using Coarse-Grained Molecular Dynamics Simulations.
    Yang J; Custer D; Chun Chiang C; Meng Z; Yao XH
    Comput Mater Sci; 2021 Apr; 191():. PubMed ID: 33737768
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improved Damping and High Strength of Graphene-Coated Nickel Hybrid Foams.
    Wang H; Ma C; Zhang W; Cheng HM; Zeng Y
    ACS Appl Mater Interfaces; 2019 Nov; 11(45):42690-42696. PubMed ID: 31638382
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Graphene Foam: Uniaxial Tension Behavior and Fracture Mode Based on a Mesoscopic Model.
    Pan D; Wang C; Wang TC; Yao Y
    ACS Nano; 2017 Sep; 11(9):8988-8997. PubMed ID: 28825792
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and Compressive Properties of Invar-Cenosphere Syntactic Foams.
    Luong D; Lehmhus D; Gupta N; Weise J; Bayoumi M
    Materials (Basel); 2016 Feb; 9(2):. PubMed ID: 28787915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In situ tensile fracturing of multilayer graphene nanosheets for their in-plane mechanical properties.
    Li P; Cao K; Jiang C; Xu S; Gao L; Xiao X; Lu Y
    Nanotechnology; 2019 Nov; 30(47):475708. PubMed ID: 31507271
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The mechanical property and microscopic deformation mechanism of nanoparticle-contained graphene foam materials under uniaxial compression.
    Khan MB; Wang C; Wang S; Fang D; Chen S
    Nanotechnology; 2021 Mar; 32(11):115701. PubMed ID: 33361558
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of Intrinsic Ripples on Elasticity of the Graphene Monolayer.
    Lee S
    Nanoscale Res Lett; 2015 Dec; 10(1):422. PubMed ID: 26501834
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Unusually low and density-insensitive thermal conductivity of three-dimensional gyroid graphene.
    Jung GS; Yeo J; Tian Z; Qin Z; Buehler MJ
    Nanoscale; 2017 Sep; 9(36):13477-13484. PubMed ID: 28861576
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.