BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 34514289)

  • 1.
    Yee S; Rolland V; Reynolds KB; Shrestha P; Ma L; Singh SP; Vanhercke T; Petrie JR; El Tahchy A
    Plant Direct; 2021 Sep; 5(9):e343. PubMed ID: 34514289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thioesterase overexpression in Nicotiana benthamiana leaf increases the fatty acid flux into triacylgycerol.
    El Tahchy A; Reynolds KB; Petrie JR; Singh SP; Vanhercke T
    FEBS Lett; 2017 Jan; 591(2):448-456. PubMed ID: 28024101
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Up-regulation of lipid biosynthesis increases the oil content in leaves of Sorghum bicolor.
    Vanhercke T; Belide S; Taylor MC; El Tahchy A; Okada S; Rolland V; Liu Q; Mitchell M; Shrestha P; Venables I; Ma L; Blundell C; Mathew A; Ziolkowski L; Niesner N; Hussain D; Dong B; Liu G; Godwin ID; Lee J; Rug M; Zhou XR; Singh SP; Petrie JR
    Plant Biotechnol J; 2019 Jan; 17(1):220-232. PubMed ID: 29873878
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Transcriptional transitions in Nicotiana benthamiana leaves upon induction of oil synthesis by WRINKLED1 homologs from diverse species and tissues.
    Grimberg Å; Carlsson AS; Marttila S; Bhalerao R; Hofvander P
    BMC Plant Biol; 2015 Aug; 15():192. PubMed ID: 26253704
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The expression of genes encoding novel Sesame oleosin variants facilitates enhanced triacylglycerol accumulation in Arabidopsis leaves and seeds.
    Anaokar S; Liang Y; Yu XH; Cai Y; Cai Y; Shanklin J
    New Phytol; 2024 Jul; 243(1):271-283. PubMed ID: 38329350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering storage capacity for volatile sesquiterpenes in Nicotiana benthamiana leaves.
    Delatte TL; Scaiola G; Molenaar J; de Sousa Farias K; Alves Gomes Albertti L; Busscher J; Verstappen F; Carollo C; Bouwmeester H; Beekwilder J
    Plant Biotechnol J; 2018 Dec; 16(12):1997-2006. PubMed ID: 29682901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metabolic engineering of biomass for high energy density: oilseed-like triacylglycerol yields from plant leaves.
    Vanhercke T; El Tahchy A; Liu Q; Zhou XR; Shrestha P; Divi UK; Ral JP; Mansour MP; Nichols PD; James CN; Horn PJ; Chapman KD; Beaudoin F; Ruiz-López N; Larkin PJ; de Feyter RC; Singh SP; Petrie JR
    Plant Biotechnol J; 2014 Feb; 12(2):231-9. PubMed ID: 24151938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Metabolic engineering of medium-chain fatty acid biosynthesis in Nicotiana benthamiana plant leaf lipids.
    Reynolds KB; Taylor MC; Zhou XR; Vanhercke T; Wood CC; Blanchard CL; Singh SP; Petrie JR
    Front Plant Sci; 2015; 6():164. PubMed ID: 25852716
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ectopic expression of
    Maravi DK; Kumar S; Sharma PK; Kobayashi Y; Goud VV; Sakurai N; Koyama H; Sahoo L
    Biotechnol Biofuels; 2016; 9():226. PubMed ID: 27790288
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR4 Interacts with WRINKLED1 to Mediate Seed Oil Biosynthesis.
    Kong Q; Singh SK; Mantyla JJ; Pattanaik S; Guo L; Yuan L; Benning C; Ma W
    Plant Physiol; 2020 Oct; 184(2):658-665. PubMed ID: 32663164
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The function of the WRI1-TCP4 regulatory module in lipid biosynthesis.
    Kong Q; Yang Y; Low PM; Guo L; Yuan L; Ma W
    Plant Signal Behav; 2020 Nov; 15(11):1812878. PubMed ID: 32880205
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Proteomic Analysis of Lipid Droplets in Sesamum indicum.
    Hamada S; Kishikawa A; Yoshida M
    Protein J; 2020 Aug; 39(4):366-376. PubMed ID: 32472380
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Synergistic Genetic Engineering Strategy Induced Triacylglycerol Accumulation in Potato (
    Xu XY; Akbar S; Shrestha P; Venugoban L; Devilla R; Hussain D; Lee J; Rug M; Tian L; Vanhercke T; Singh SP; Li Z; Sharp PJ; Liu Q
    Front Plant Sci; 2020; 11():215. PubMed ID: 32210994
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In vivo packaging of triacylglycerols enhances Arabidopsis leaf biomass and energy density.
    Winichayakul S; Scott RW; Roldan M; Hatier JH; Livingston S; Cookson R; Curran AC; Roberts NJ
    Plant Physiol; 2013 Jun; 162(2):626-39. PubMed ID: 23616604
    [TBL] [Abstract][Full Text] [Related]  

  • 15. 14-3-3 protein mediates plant seed oil biosynthesis through interaction with AtWRI1.
    Ma W; Kong Q; Mantyla JJ; Yang Y; Ohlrogge JB; Benning C
    Plant J; 2016 Oct; 88(2):228-235. PubMed ID: 27322486
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mouse fat storage-inducing transmembrane protein 2 (FIT2) promotes lipid droplet accumulation in plants.
    Cai Y; McClinchie E; Price A; Nguyen TN; Gidda SK; Watt SC; Yurchenko O; Park S; Sturtevant D; Mullen RT; Dyer JM; Chapman KD
    Plant Biotechnol J; 2017 Jul; 15(7):824-836. PubMed ID: 27987528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. WRINKLED1 as a novel 14-3-3 client: function of 14-3-3 proteins in plant lipid metabolism.
    Kong Q; Ma W
    Plant Signal Behav; 2018; 13(8):e1482176. PubMed ID: 30067435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expression of
    An D; Kim H; Ju S; Go YS; Kim HU; Suh MC
    Front Plant Sci; 2017; 8():34. PubMed ID: 28174580
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolically engineered rice biomass and grain using genes associated with lipid pathway show high level of oil content.
    Izadi-Darbandi A; Younessi-Hamzekhanlu M; Sticklen M
    Mol Biol Rep; 2020 Oct; 47(10):7917-7927. PubMed ID: 32975743
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Engineering the production of conjugated fatty acids in Arabidopsis thaliana leaves.
    Yurchenko O; Shockey JM; Gidda SK; Silver MI; Chapman KD; Mullen RT; Dyer JM
    Plant Biotechnol J; 2017 Aug; 15(8):1010-1023. PubMed ID: 28083898
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.