BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 34514386)

  • 1. Acute Effects of the Wim Hof Breathing Method on Repeated Sprint Ability: A Pilot Study.
    Citherlet T; Crettaz von Roten F; Kayser B; Guex K
    Front Sports Act Living; 2021; 3():700757. PubMed ID: 34514386
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Does Wim Hof Method Improve Breathing Economy during Exercise?
    Marko D; Bahenský P; Bunc V; Grosicki GJ; Vondrasek JD
    J Clin Med; 2022 Apr; 11(8):. PubMed ID: 35456308
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of Hyperventilation on Repeated Pedaling Sprint Performance: Short vs. Long Intervention Duration.
    Sakamoto A; Naito H; Chow CM
    J Strength Cond Res; 2018 Jan; 32(1):170-180. PubMed ID: 28135216
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hyperventilation as a strategy for improved repeated sprint performance.
    Sakamoto A; Naito H; Chow CM
    J Strength Cond Res; 2014 Apr; 28(4):1119-26. PubMed ID: 23838981
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Voluntary hypocapnic hyperventilation lasting 5 min and 20 min similarly reduce aerobic metabolism without affecting power outputs during Wingate anaerobic test.
    Dobashi K; Fujii N; Ichinose M; Fujimoto T; Nishiyasu T
    Eur J Sport Sci; 2021 Aug; 21(8):1148-1155. PubMed ID: 32814502
    [No Abstract]   [Full Text] [Related]  

  • 6. Comparing the Effects of Two Different Levels of Hyperoxygenation on Gas Exchange During Open Endotracheal Suctioning: A Randomized Crossover Study.
    Vianna JR; Pires Di Lorenzo VA; Simões MM; Jamami M
    Respir Care; 2017 Jan; 62(1):92-101. PubMed ID: 28003557
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The effect of increased apparatus dead space and tidal volumes on carbon dioxide elimination and oxygen saturations in a low-flow anesthesia system.
    Enekvist BJ; Luttropp HH; Johansson A
    J Clin Anesth; 2008 May; 20(3):170-4. PubMed ID: 18502358
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cardiorespiratory Response and Power Output During Submaximal Exercise in Normobaric Versus Hypobaric Hypoxia: A Pilot Study Using a Specific Chamber that Controls Environmental Factors.
    Takezawa T; Dobashi S; Koyama K
    High Alt Med Biol; 2021 Jun; 22(2):201-208. PubMed ID: 33599547
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluation of the running-based anaerobic sprint test as a measure of repeated sprint ability in collegiate-level soccer players.
    Keir DA; Thériault F; Serresse O
    J Strength Cond Res; 2013 Jun; 27(6):1671-8. PubMed ID: 22996022
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Can eucapnic hyperventilation prolong a subsequent breath-hold?
    Norfleet WT; Bradley CL
    Respir Physiol; 1987 Dec; 70(3):369-76. PubMed ID: 3120265
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced pulmonary and active skeletal muscle gas exchange during intense exercise after sprint training in men.
    McKenna MJ; Heigenhauser GJ; McKelvie RS; Obminski G; MacDougall JD; Jones NL
    J Physiol; 1997 Jun; 501 ( Pt 3)(Pt 3):703-16. PubMed ID: 9218229
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hyperventilation stimulates the release of prostaglandin I2 and E2 from lung in humans.
    Ishii Y; Kitamura S
    Prostaglandins; 1990 Jun; 39(6):685-91. PubMed ID: 2115188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Maximal breath-holding time and immediate tissue CO2 storage capacity during head-out immersion in humans.
    Chang LP; Lundgren CE
    Eur J Appl Physiol Occup Physiol; 1996; 73(3-4):210-8. PubMed ID: 8781848
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physiological Factors Associated With Declining Repeated Sprint Performance in Hypoxia.
    Gatterer H; Menz V; Untersteiner C; Klarod K; Burtscher M
    J Strength Cond Res; 2019 Jan; 33(1):211-216. PubMed ID: 28277432
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Psychophysiological reactions to two levels of voluntary hyperventilation in panic disorder.
    Wollburg E; Meuret AE; Conrad A; Roth WT; Kim S
    J Anxiety Disord; 2008 Jun; 22(5):886-98. PubMed ID: 17950571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A simple method for isocapnic hyperventilation evaluated in a lung model.
    Hallén K; Stenqvist O; Ricksten SE; Lindgren S
    Acta Anaesthesiol Scand; 2016 May; 60(5):597-606. PubMed ID: 26688296
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cerebrovascular reactivity to carbon dioxide is not influenced by variability in the ventilatory sensitivity to carbon dioxide.
    Howe CA; Caldwell HG; Carr J; Nowak-Flück D; Ainslie PN; Hoiland RL
    Exp Physiol; 2020 May; 105(5):904-915. PubMed ID: 32091142
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Calculation algorithms alter the breath-by-breath gas exchange values when abrupt changes in ventilation occur.
    Cettolo V; Francescato MP
    Clin Physiol Funct Imaging; 2018 May; 38(3):491-496. PubMed ID: 28574212
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Persistent, progressive hypophosphataemia after voluntary hyperventilation.
    Paleologos M; Stone E; Braude S
    Clin Sci (Lond); 2000 May; 98(5):619-25. PubMed ID: 10781395
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ventilatory and gas exchange responses under spontaneous and fixed breathing modes during arm exercise.
    Itoh M; Fukuoka Y; Endo M; Kagawa H; Araki H; Nishi K
    J Physiol Anthropol Appl Human Sci; 2002 Sep; 21(5):239-45. PubMed ID: 12491821
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.