BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 34514952)

  • 21. The prognostic value and potential subtypes of immune activity scores in three major urological cancers.
    Shi B; Qi J
    J Cell Physiol; 2021 Apr; 236(4):2620-2630. PubMed ID: 32853461
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MTR D919G variant is associated with prostate adenocarcinoma risk: evidence based on 51106 subjects.
    Jing HW; Yin L; Yu HY; Zuo L; Liu T
    Eur Rev Med Pharmacol Sci; 2020 Aug; 24(16):8329-8340. PubMed ID: 32894539
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Correlation of zinc finger protein 2, a prognostic biomarker, with immune infiltrates in liver cancer.
    Sun L; Lin Y; Wang G; Zhang L; Hu L; Lu Z
    Biosci Rep; 2021 Jan; 41(1):. PubMed ID: 33439969
    [TBL] [Abstract][Full Text] [Related]  

  • 24. TP63-TRIM29 axis regulates enhancer methylation and chromosomal instability in prostate cancer.
    Sultanov R; Mulyukina A; Zubkova O; Fedoseeva A; Bogomazova A; Klimina K; Larin A; Zatsepin T; Prikazchikova T; Lukina M; Bogomiakova M; Sharova E; Generozov E; Lagarkova M; Arapidi G
    Epigenetics Chromatin; 2024 Mar; 17(1):6. PubMed ID: 38481282
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Expression patterns and a prognostic model of m
    Ou-Yang S; Liu JH; Wang QZ
    Biomark Med; 2020 Dec; 14(17):1663-1677. PubMed ID: 33336591
    [No Abstract]   [Full Text] [Related]  

  • 26. The Comprehensive Analysis of Hub Gene ARRB2 in Prostate Cancer.
    Zhou B; Song H; Xu W; Zhang Y; Liu Y; Qi W
    Dis Markers; 2022; 2022():8518378. PubMed ID: 36284990
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioinformatics Analysis of GFAP as a Potential Key Regulator in Different Immune Phenotypes of Prostate Cancer.
    Yao W; Li X; Jia Z; Gu C; Jin Z; Wang J; Yuan B; Yang J
    Biomed Res Int; 2021; 2021():1466255. PubMed ID: 34222466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antioxidative stress protein SRXN1 can be used as a radiotherapy prognostic marker for prostate cancer.
    Wang X; Yu J; Wen H; Yan J; Peng K; Zhou H
    BMC Urol; 2023 Sep; 23(1):148. PubMed ID: 37726767
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Golgi phosphoprotein 3 expression predicts poor prognosis in patients with prostate cancer undergoing radical prostatectomy.
    Zhang L; Guo F; Gao X; Wu Y
    Mol Med Rep; 2015 Jul; 12(1):1298-304. PubMed ID: 25760033
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Identification of prognosis-related genes in the tumor microenvironment of stomach adenocarcinoma by TCGA and GEO datasets.
    Ren N; Liang B; Li Y
    Biosci Rep; 2020 Oct; 40(10):. PubMed ID: 33015704
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Identification and analysis of survival-associated ceRNA triplets in prostate adenocarcinoma.
    Li F; Li H; Hou Y
    Oncol Lett; 2019 Oct; 18(4):4040-4047. PubMed ID: 31579415
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Profiles of miRNA Isoforms and tRNA Fragments in Prostate Cancer.
    Magee RG; Telonis AG; Loher P; Londin E; Rigoutsos I
    Sci Rep; 2018 Mar; 8(1):5314. PubMed ID: 29593348
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of potential targets of triptolide in regulating the tumor microenvironment of stomach adenocarcinoma patients using bioinformatics.
    Qiu H; Zhang X; Yu H; Gao R; Shi J; Shen T
    Bioengineered; 2021 Dec; 12(1):4304-4319. PubMed ID: 34348580
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A lncRNA-immune checkpoint-related gene signature predicts metastasis-free survival in prostate adenocarcinoma.
    Ye C; Qin S; Qiu S; Zhao L; Miao J; Chen Y; Zhou T
    Transl Androl Urol; 2022 Dec; 11(12):1691-1705. PubMed ID: 36632155
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Systemic surfaceome profiling identifies target antigens for immune-based therapy in subtypes of advanced prostate cancer.
    Lee JK; Bangayan NJ; Chai T; Smith BA; Pariva TE; Yun S; Vashisht A; Zhang Q; Park JW; Corey E; Huang J; Graeber TG; Wohlschlegel J; Witte ON
    Proc Natl Acad Sci U S A; 2018 May; 115(19):E4473-E4482. PubMed ID: 29686080
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Identification of key DNA methylation-driven genes in prostate adenocarcinoma: an integrative analysis of TCGA methylation data.
    Xu N; Wu YP; Ke ZB; Liang YC; Cai H; Su WT; Tao X; Chen SH; Zheng QS; Wei Y; Xue XY
    J Transl Med; 2019 Sep; 17(1):311. PubMed ID: 31533842
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Parkinson's Disease as a Risk Factor for Prostate Adenocarcinoma: A Molecular Point of View.
    Liu T; Yang Z; Liu S; Wei J
    Gerontology; 2023; 69(8):986-1001. PubMed ID: 36921580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NPRL2 reduces the niraparib sensitivity of castration-resistant prostate cancer via interacting with UBE2M and enhancing neddylation.
    Zhao X; Jiang L; Hu D; Tang Y; Zhao G; Du X; Luo S; Tang W
    Exp Cell Res; 2021 Jun; 403(2):112614. PubMed ID: 33905671
    [TBL] [Abstract][Full Text] [Related]  

  • 39. ZFC3H1, a zinc finger protein, modulates IL-8 transcription by binding with celastramycin A, a potential immune suppressor.
    Tomita T; Ieguchi K; Coin F; Kato Y; Kikuchi H; Oshima Y; Kurata S; Maru Y
    PLoS One; 2014; 9(9):e108957. PubMed ID: 25268596
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The miR-96 and RARγ signaling axis governs androgen signaling and prostate cancer progression.
    Long MD; Singh PK; Russell JR; Llimos G; Rosario S; Rizvi A; van den Berg PR; Kirk J; Sucheston-Campbell LE; Smiraglia DJ; Campbell MJ
    Oncogene; 2019 Jan; 38(3):421-444. PubMed ID: 30120411
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.