These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
4. Hydrogel-Assisted Double Molding Enables Rapid Replication of Stereolithographic 3D Prints for Engineered Tissue Design. Simmons DW; Schuftan DR; Ramahdita G; Huebsch N ACS Appl Mater Interfaces; 2023 May; 15(21):25313-25323. PubMed ID: 37200617 [TBL] [Abstract][Full Text] [Related]
5. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography. Wilson ME; Kota N; Kim Y; Wang Y; Stolz DB; LeDuc PR; Ozdoganlar OB Lab Chip; 2011 Apr; 11(8):1550-5. PubMed ID: 21399830 [TBL] [Abstract][Full Text] [Related]
6. Permeability and mechanical properties of gradient porous PDMS scaffolds fabricated by 3D-printed sacrificial templates designed with minimal surfaces. Montazerian H; Mohamed MGA; Montazeri MM; Kheiri S; Milani AS; Kim K; Hoorfar M Acta Biomater; 2019 Sep; 96():149-160. PubMed ID: 31252172 [TBL] [Abstract][Full Text] [Related]
7. Microlens Fabrication by Replica Molding of Electro-Hydrodynamic Printing Liquid Mold. Fang F; Tao X; Chen X; Wang H; Wu P; Zhang J; Zeng J; Zhu Z; Liu Z Micromachines (Basel); 2020 Feb; 11(2):. PubMed ID: 32028701 [TBL] [Abstract][Full Text] [Related]
8. Scaffold pore space modulation through intelligent design of dissolvable microparticles. Liebschner MA; Wettergreen M Methods Mol Biol; 2012; 868():71-89. PubMed ID: 22692605 [TBL] [Abstract][Full Text] [Related]
9. A new method of fabricating a blend scaffold using an indirect three-dimensional printing technique. Jung JW; Lee H; Hong JM; Park JH; Shim JH; Choi TH; Cho DW Biofabrication; 2015 Nov; 7(4):045003. PubMed ID: 26525821 [TBL] [Abstract][Full Text] [Related]
10. Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering. Hassanajili S; Karami-Pour A; Oryan A; Talaei-Khozani T Mater Sci Eng C Mater Biol Appl; 2019 Nov; 104():109960. PubMed ID: 31500051 [TBL] [Abstract][Full Text] [Related]
11. Fabrication of three-dimensional porous scaffolds with controlled filament orientation and large pore size via an improved E-jetting technique. Li JL; Cai YL; Guo YL; Fuh JY; Sun J; Hong GS; Lam RN; Wong YS; Wang W; Tay BY; Thian ES J Biomed Mater Res B Appl Biomater; 2014 May; 102(4):651-8. PubMed ID: 24155124 [TBL] [Abstract][Full Text] [Related]
12. Fabrication, densification, and replica molding of 3D carbon nanotube microstructures. Copic D; Park SJ; Tawfick S; De Volder M; Hart AJ J Vis Exp; 2012 Jul; (65):. PubMed ID: 22806089 [TBL] [Abstract][Full Text] [Related]
13. [Study on the preparation of polycaprolactone/type Shen S; Chen M; Gao S; Guo W; Wang Z; Li H; Li X; Zhang B; Xian H; Zhang X; Liu S; Hao L; Zhuo N; Guo Q Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi; 2018 Sep; 32(9):1205-1210. PubMed ID: 30129332 [TBL] [Abstract][Full Text] [Related]
14. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process. Park JH; Jung JW; Kang HW; Cho DW Biofabrication; 2014 Jun; 6(2):025003. PubMed ID: 24658060 [TBL] [Abstract][Full Text] [Related]
15. Fabrication of scalable tissue engineering scaffolds with dual-pore microarchitecture by combining 3D printing and particle leaching. Mohanty S; Sanger K; Heiskanen A; Trifol J; Szabo P; Dufva M; Emnéus J; Wolff A Mater Sci Eng C Mater Biol Appl; 2016 Apr; 61():180-9. PubMed ID: 26838839 [TBL] [Abstract][Full Text] [Related]