These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 34515463)

  • 1. Pressure-Induced Enhancement of Thermoelectric Performance in Rubrene.
    Zhang Z; Qi N; Wu Y; Chen Z
    ACS Appl Mater Interfaces; 2021 Sep; 13(37):44409-44417. PubMed ID: 34515463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Unprecedented Enhancement of Thermoelectric Power Factor Induced by Pressure in Small-Molecule Organic Semiconductors.
    Shi W; Deng T; Wu G; Hippalgaonkar K; Wang JS; Yang SW
    Adv Mater; 2019 Sep; 31(36):e1901956. PubMed ID: 31348561
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High thermoelectric performance of topological half-Heusler compound LaPtBi achieved by hydrostatic pressure.
    Ning S; Huang S; Zhang Z; Zhang R; Qi N; Chen Z
    Phys Chem Chem Phys; 2020 Jul; 22(26):14621-14629. PubMed ID: 32567608
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Strain-Induced Ultrahigh Electron Mobility and Thermoelectric Figure of Merit in Monolayer α-Te.
    Ma J; Meng F; He J; Jia Y; Li W
    ACS Appl Mater Interfaces; 2020 Sep; 12(39):43901-43910. PubMed ID: 32870654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Hole-phonon coupling effect on the band dispersion of organic molecular semiconductors.
    Bussolotti F; Yang J; Yamaguchi T; Yonezawa K; Sato K; Matsunami M; Tanaka K; Nakayama Y; Ishii H; Ueno N; Kera S
    Nat Commun; 2017 Aug; 8(1):173. PubMed ID: 28765525
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of intermolecular interactions in orthorhombic rubrene.
    Hathwar VR; Sist M; Jørgensen MR; Mamakhel AH; Wang X; Hoffmann CM; Sugimoto K; Overgaard J; Iversen BB
    IUCrJ; 2015 Sep; 2(Pt 5):563-74. PubMed ID: 26306198
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nonlocal Electron-Phonon Coupling in Prototypical Molecular Semiconductors from First Principles.
    Xie X; Santana-Bonilla A; Troisi A
    J Chem Theory Comput; 2018 Jul; 14(7):3752-3762. PubMed ID: 29851487
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Thermoelectric Properties of SnS with Na-Doping.
    Zhou B; Li S; Li W; Li J; Zhang X; Lin S; Chen Z; Pei Y
    ACS Appl Mater Interfaces; 2017 Oct; 9(39):34033-34041. PubMed ID: 28895395
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Tailoring phononic, electronic, and thermoelectric properties of orthorhombic GeSe through hydrostatic pressure.
    Yuan K; Sun Z; Zhang X; Tang D
    Sci Rep; 2019 Jul; 9(1):9490. PubMed ID: 31263221
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Uniaxial Tensile Strain Induced the Enhancement of Thermoelectric Properties in
    Zou C; Lei C; Zou D; Liu Y
    Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32283714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical Potential Tuning and Enhancement of Thermoelectric Properties in Indium Selenides.
    Rhyee JS; Kim JH
    Materials (Basel); 2015 Mar; 8(3):1283-1324. PubMed ID: 28788002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A DFT Study on the Electronic Structures and Conducting Properties of Rubrene and its Derivatives in Organic Field-Effect Transistors.
    Ma H; Liu N; Huang JD
    Sci Rep; 2017 Mar; 7(1):331. PubMed ID: 28336952
    [TBL] [Abstract][Full Text] [Related]  

  • 13. First-principles investigation of organic semiconductors for thermoelectric applications.
    Wang D; Tang L; Long M; Shuai Z
    J Chem Phys; 2009 Dec; 131(22):224704. PubMed ID: 20001073
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of charge carriers with lattice and molecular phonons in crystalline pentacene.
    Girlando A; Grisanti L; Masino M; Brillante A; Della Valle RG; Venuti E
    J Chem Phys; 2011 Aug; 135(8):084701. PubMed ID: 21895208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Theoretical model for predicting thermoelectric properties of tin chalcogenides.
    Gupta R; Kumar N; Kaur P; Bera C
    Phys Chem Chem Phys; 2020 Sep; 22(34):18989-19008. PubMed ID: 32812596
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluating the Thermoelectric Properties of BaTiS
    Paudel TR; Tsymbal EY
    ACS Omega; 2020 Jun; 5(21):12385-12390. PubMed ID: 32548422
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The strong thermoelectric effect in nanocarbon generated by the ballistic phonon drag of electrons.
    Eidelman ED; Vul' AY
    J Phys Condens Matter; 2007 Jul; 19(26):266210. PubMed ID: 21694087
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High Thermoelectric Performance of In
    Yin X; Liu JY; Chen L; Wu LM
    Acc Chem Res; 2018 Feb; 51(2):240-247. PubMed ID: 29313668
    [TBL] [Abstract][Full Text] [Related]  

  • 19. High thermoelectric performance of the distorted bismuth(110) layer.
    Cheng L; Liu HJ; Zhang J; Wei J; Liang JH; Jiang PH; Fan DD; Sun L; Shi J
    Phys Chem Chem Phys; 2016 Jul; 18(26):17373-9. PubMed ID: 27302907
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First-Principles Predictions of Thermoelectric Figure of Merit for Organic Materials: Deformation Potential Approximation.
    Chen J; Wang D; Shuai Z
    J Chem Theory Comput; 2012 Sep; 8(9):3338-47. PubMed ID: 26605740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.