BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 34515686)

  • 1. Direct Reprogramming of Mouse Fibroblasts into Melanocytes.
    Zhang YX; Liu LP; Jin M; Sun H; Zhang HL; Li YM
    J Vis Exp; 2021 Aug; (174):. PubMed ID: 34515686
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Direct conversion of mouse and human fibroblasts to functional melanocytes by defined factors.
    Yang R; Zheng Y; Li L; Liu S; Burrows M; Wei Z; Nace A; Herlyn M; Cui R; Guo W; Cotsarelis G; Xu X
    Nat Commun; 2014 Dec; 5():5807. PubMed ID: 25510211
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Intelligent bioengineering in vitiligo treatment: transdermal protein transduction of melanocyte-lineage-specific genes.
    Mou Y; Jiang X; Du Y; Xue L
    Med Hypotheses; 2012 Dec; 79(6):786-9. PubMed ID: 22999738
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Decreased expression of neuregulin1 in the lesional skin of vitiligo patients.
    Rani S; Kumari U; Bhardwaj S; Parsad D; Sharma VL; Kumar R
    Int J Dermatol; 2019 Feb; 58(2):242-249. PubMed ID: 30074619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The regenerative potential of autologous stem and somatic cells in vitiligo.
    Chanteloube S; Debret R
    Eur J Dermatol; 2024 Feb; 34(1):13-17. PubMed ID: 38557453
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A role for tyrosinase-related protein 1 in 4-tert-butylphenol-induced toxicity in melanocytes: Implications for vitiligo.
    Manga P; Sheyn D; Yang F; Sarangarajan R; Boissy RE
    Am J Pathol; 2006 Nov; 169(5):1652-62. PubMed ID: 17071589
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differentiation of adipose-derived stem cells to functional CD105
    Zavala G; Sandoval C; Meza D; Contreras R; Gubelin W; Khoury M
    Stem Cell Res Ther; 2019 Aug; 10(1):249. PubMed ID: 31399041
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In vivo and in vitro evidence of dermal fibroblasts influence on human epidermal pigmentation.
    Cario-André M; Pain C; Gauthier Y; Casoli V; Taieb A
    Pigment Cell Res; 2006 Oct; 19(5):434-42. PubMed ID: 16965272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dysregulation of melanocyte function by Th17-related cytokines: significance of Th17 cell infiltration in autoimmune vitiligo vulgaris.
    Kotobuki Y; Tanemura A; Yang L; Itoi S; Wataya-Kaneda M; Murota H; Fujimoto M; Serada S; Naka T; Katayama I
    Pigment Cell Melanoma Res; 2012 Mar; 25(2):219-30. PubMed ID: 22136309
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Trends in Regenerative Medicine: Repigmentation in Vitiligo Through Melanocyte Stem Cell Mobilization.
    Birlea SA; Costin GE; Roop DR; Norris DA
    Med Res Rev; 2017 Jul; 37(4):907-935. PubMed ID: 28029168
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Involvement of non-melanocytic skin cells in vitiligo.
    Bastonini E; Bellei B; Filoni A; Kovacs D; Iacovelli P; Picardo M
    Exp Dermatol; 2019 Jun; 28(6):667-673. PubMed ID: 30582762
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Isolating RNA from precursor and mature melanocytes from human vitiligo and normal skin using laser capture microdissection.
    Goldstein NB; Koster MI; Hoaglin LG; Wright MJ; Robinson SE; Robinson WA; Roop DR; Norris DA; Birlea SA
    Exp Dermatol; 2016 Oct; 25(10):805-11. PubMed ID: 27193292
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Functional melanocytes are readily reprogrammable from multilineage-differentiating stress-enduring (muse) cells, distinct stem cells in human fibroblasts.
    Tsuchiyama K; Wakao S; Kuroda Y; Ogura F; Nojima M; Sawaya N; Yamasaki K; Aiba S; Dezawa M
    J Invest Dermatol; 2013 Oct; 133(10):2425-2435. PubMed ID: 23563197
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Involvement of adenylate cyclase/cAMP/CREB and SOX9/MITF in melanogenesis to prevent vitiligo.
    Arora N; Siddiqui EM; Mehan S
    Mol Cell Biochem; 2021 Mar; 476(3):1401-1409. PubMed ID: 33389492
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of IL-17A receptor blocking in melanocyte survival: A strategic intervention against vitiligo.
    Bhardwaj S; Bhatia A; Kumaran MS; Parsad D
    Exp Dermatol; 2019 Jun; 28(6):682-689. PubMed ID: 30120811
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New insight into the role of exosomes in vitiligo.
    Wong PM; Yang L; Yang L; Wu H; Li W; Ma X; Katayama I; Zhang H
    Autoimmun Rev; 2020 Nov; 19(11):102664. PubMed ID: 32942029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Serum levels of miRNA-21-5p in vitiligo patients and effects of miRNA-21-5p on SOX5, beta-catenin, CDK2 and MITF protein expression in normal human melanocytes.
    Aguennouz M; Guarneri F; Oteri R; Polito F; Giuffrida R; Cannavò SP
    J Dermatol Sci; 2021 Jan; 101(1):22-29. PubMed ID: 33176966
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The enigma and challenges of vitiligo pathophysiology and treatment.
    Abdel-Malek ZA; Jordan C; Ho T; Upadhyay PR; Fleischer A; Hamzavi I
    Pigment Cell Melanoma Res; 2020 Nov; 33(6):778-787. PubMed ID: 32198977
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lipopolysaccharide reduces melanin synthesis in vitiligo melanocytes by regulating autophagy.
    Sun L; Sun J; Huo X; Feng Q; Li Y; Xie X; Geng S
    Exp Dermatol; 2022 Oct; 31(10):1579-1585. PubMed ID: 35733278
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SFRP5 inhibits melanin synthesis of melanocytes in vitiligo by suppressing the Wnt/β-catenin signaling.
    Zou DP; Chen YM; Zhang LZ; Yuan XH; Zhang YJ; Inggawati A; Kieu Nguyet PT; Gao TW; Chen J
    Genes Dis; 2021 Sep; 8(5):677-688. PubMed ID: 34291139
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.