These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
481 related articles for article (PubMed ID: 34515874)
21. Mitochondrial dysfunction, mitophagy, and role of dynamin-related protein 1 in Alzheimer's disease. Medala VK; Gollapelli B; Dewanjee S; Ogunmokun G; Kandimalla R; Vallamkondu J J Neurosci Res; 2021 Apr; 99(4):1120-1135. PubMed ID: 33465841 [TBL] [Abstract][Full Text] [Related]
22. Synergy in Disruption of Mitochondrial Dynamics by Aβ (1-42) and Glia Maturation Factor (GMF) in SH-SY5Y Cells Is Mediated Through Alterations in Fission and Fusion Proteins. Ahmed ME; Selvakumar GP; Kempuraj D; Thangavel R; Mentor S; Dubova I; Raikwar SP; Zaheer S; Iyer S; Zaheer A Mol Neurobiol; 2019 Oct; 56(10):6964-6975. PubMed ID: 30949973 [TBL] [Abstract][Full Text] [Related]
23. Characterisation of premature cell senescence in Alzheimer's disease using single nuclear transcriptomics. Fancy NN; Smith AM; Caramello A; Tsartsalis S; Davey K; Muirhead RCJ; McGarry A; Jenkyns MH; Schneegans E; Chau V; Thomas M; Boulger S; Cheung TKD; Adair E; Papageorgopoulou M; Willumsen N; Khozoie C; Gomez-Nicola D; Jackson JS; Matthews PM Acta Neuropathol; 2024 May; 147(1):78. PubMed ID: 38695952 [TBL] [Abstract][Full Text] [Related]
24. Dystrophic (senescent) rather than activated microglial cells are associated with tau pathology and likely precede neurodegeneration in Alzheimer's disease. Streit WJ; Braak H; Xue QS; Bechmann I Acta Neuropathol; 2009 Oct; 118(4):475-85. PubMed ID: 19513731 [TBL] [Abstract][Full Text] [Related]
25. Tau and neuroinflammation: What impact for Alzheimer's Disease and Tauopathies? Laurent C; Buée L; Blum D Biomed J; 2018 Feb; 41(1):21-33. PubMed ID: 29673549 [TBL] [Abstract][Full Text] [Related]
26. Glia and TRPM2 Channels in Plasticity of Central Nervous System and Alzheimer's Diseases. Wang J; Jackson MF; Xie YF Neural Plast; 2016; 2016():1680905. PubMed ID: 26942016 [TBL] [Abstract][Full Text] [Related]
27. Glia and zinc in ageing and Alzheimer's disease: a mechanism for cognitive decline? Hancock SM; Finkelstein DI; Adlard PA Front Aging Neurosci; 2014; 6():137. PubMed ID: 25009495 [TBL] [Abstract][Full Text] [Related]
28. Deregulated mitochondrial microRNAs in Alzheimer's disease: Focus on synapse and mitochondria. Gowda P; Reddy PH; Kumar S Ageing Res Rev; 2022 Jan; 73():101529. PubMed ID: 34813976 [TBL] [Abstract][Full Text] [Related]
30. Diabetic phenotype in mouse and humans reduces the number of microglia around β-amyloid plaques. Natunen T; Martiskainen H; Marttinen M; Gabbouj S; Koivisto H; Kemppainen S; Kaipainen S; Takalo M; Svobodová H; Leppänen L; Kemiläinen B; Ryhänen S; Kuulasmaa T; Rahunen E; Juutinen S; Mäkinen P; Miettinen P; Rauramaa T; Pihlajamäki J; Haapasalo A; Leinonen V; Tanila H; Hiltunen M Mol Neurodegener; 2020 Nov; 15(1):66. PubMed ID: 33168021 [TBL] [Abstract][Full Text] [Related]
31. Contribution of Neurons and Glial Cells to Complement-Mediated Synapse Removal during Development, Aging and in Alzheimer's Disease. Luchena C; Zuazo-Ibarra J; Alberdi E; Matute C; Capetillo-Zarate E Mediators Inflamm; 2018; 2018():2530414. PubMed ID: 30533998 [TBL] [Abstract][Full Text] [Related]
32. Fibrillar Aβ triggers microglial proteome alterations and dysfunction in Alzheimer mouse models. Sebastian Monasor L; Müller SA; Colombo AV; Tanrioever G; König J; Roth S; Liesz A; Berghofer A; Piechotta A; Prestel M; Saito T; Saido TC; Herms J; Willem M; Haass C; Lichtenthaler SF; Tahirovic S Elife; 2020 Jun; 9():. PubMed ID: 32510331 [TBL] [Abstract][Full Text] [Related]
33. Microglia and microglial-based receptors in the pathogenesis and treatment of Alzheimer's disease. Wang Z; Weaver DF Int Immunopharmacol; 2022 Sep; 110():109070. PubMed ID: 35978514 [TBL] [Abstract][Full Text] [Related]
34. Signaling pathways regulating neuron-glia interaction and their implications in Alzheimer's disease. Lian H; Zheng H J Neurochem; 2016 Feb; 136(3):475-91. PubMed ID: 26546579 [TBL] [Abstract][Full Text] [Related]
35. Mitochondria in Alzheimer's Disease Pathogenesis. Reiss AB; Gulkarov S; Jacob B; Srivastava A; Pinkhasov A; Gomolin IH; Stecker MM; Wisniewski T; De Leon J Life (Basel); 2024 Jan; 14(2):. PubMed ID: 38398707 [TBL] [Abstract][Full Text] [Related]
36. Role of scavenger receptors in glia-mediated neuroinflammatory response associated with Alzheimer's disease. Cornejo F; von Bernhardi R Mediators Inflamm; 2013; 2013():895651. PubMed ID: 23737655 [TBL] [Abstract][Full Text] [Related]
37. Mitochondrial Dysfunction and Alzheimer's Disease: Role of Microglia. Agrawal I; Jha S Front Aging Neurosci; 2020; 12():252. PubMed ID: 32973488 [TBL] [Abstract][Full Text] [Related]
38. Metabolic Stress Alters Antioxidant Systems, Suppresses the Adiponectin Receptor 1 and Induces Alzheimer's Like Pathology in Mice Brain. Hahm JR; Jo MH; Ullah R; Kim MW; Kim MO Cells; 2020 Jan; 9(1):. PubMed ID: 31963819 [TBL] [Abstract][Full Text] [Related]
39. Isolation of glia from Alzheimer's mice reveals inflammation and dysfunction. Orre M; Kamphuis W; Osborn LM; Jansen AHP; Kooijman L; Bossers K; Hol EM Neurobiol Aging; 2014 Dec; 35(12):2746-2760. PubMed ID: 25002035 [TBL] [Abstract][Full Text] [Related]
40. Actin-mediated Microglial Chemotaxis via G-Protein Coupled Purinergic Receptor in Alzheimer's Disease. Das R; Chinnathambi S Neuroscience; 2020 Nov; 448():325-336. PubMed ID: 32941933 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]