These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
287 related articles for article (PubMed ID: 34515942)
1. Towards the Use of 2D Video-Based Markerless Motion Capture to Measure and Parameterize Movement During Functional Capacity Evaluation. Remedios SM; Fischer SL J Occup Rehabil; 2021 Dec; 31(4):754-767. PubMed ID: 34515942 [TBL] [Abstract][Full Text] [Related]
2. Concurrent validity of lower extremity kinematics and jump characteristics captured in pre-school children by a markerless 3D motion capture system. Harsted S; Holsgaard-Larsen A; Hestbæk L; Boyle E; Lauridsen HH Chiropr Man Therap; 2019; 27():39. PubMed ID: 31417672 [TBL] [Abstract][Full Text] [Related]
3. TWO-DIMENSIONAL VIDEO ANALYSIS IS COMPARABLE TO 3D MOTION CAPTURE IN LOWER EXTREMITY MOVEMENT ASSESSMENT. Schurr SA; Marshall AN; Resch JE; Saliba SA Int J Sports Phys Ther; 2017 Apr; 12(2):163-172. PubMed ID: 28515970 [TBL] [Abstract][Full Text] [Related]
4. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. Schmitz A; Ye M; Shapiro R; Yang R; Noehren B J Biomech; 2014 Jan; 47(2):587-91. PubMed ID: 24315287 [TBL] [Abstract][Full Text] [Related]
5. Examination of 2D frontal and sagittal markerless motion capture: Implications for markerless applications. Wade L; Needham L; Evans M; McGuigan P; Colyer S; Cosker D; Bilzon J PLoS One; 2023; 18(11):e0293917. PubMed ID: 37943887 [TBL] [Abstract][Full Text] [Related]
6. Principal component analysis of whole-body kinematics using markerless motion capture during static balance tasks. Eveleigh KJ; Deluzio KJ; Scott SH; Laende EK J Biomech; 2023 May; 152():111556. PubMed ID: 37004391 [TBL] [Abstract][Full Text] [Related]
7. Evaluation of 3D Markerless Motion Capture Accuracy Using OpenPose With Multiple Video Cameras. Nakano N; Sakura T; Ueda K; Omura L; Kimura A; Iino Y; Fukashiro S; Yoshioka S Front Sports Act Living; 2020; 2():50. PubMed ID: 33345042 [TBL] [Abstract][Full Text] [Related]
8. Validity of an artificial intelligence, human pose estimation model for measuring single-leg squat kinematics. Haberkamp LD; Garcia MC; Bazett-Jones DM J Biomech; 2022 Nov; 144():111333. PubMed ID: 36198251 [TBL] [Abstract][Full Text] [Related]
9. Two-dimensional video-based analysis of human gait using pose estimation. Stenum J; Rossi C; Roemmich RT PLoS Comput Biol; 2021 Apr; 17(4):e1008935. PubMed ID: 33891585 [TBL] [Abstract][Full Text] [Related]
10. Agreement between a markerless and a marker-based motion capture systems for balance related quantities. Chaumeil A; Lahkar BK; Dumas R; Muller A; Robert T J Biomech; 2024 Mar; 165():112018. PubMed ID: 38412623 [TBL] [Abstract][Full Text] [Related]
11. Agreement Between Sagittal Foot and Tibia Angles During Running Derived From an Open-Source Markerless Motion Capture Platform and Manual Digitization. Johnson CD; Outerleys J; Davis IS J Appl Biomech; 2022 Apr; 38(2):111-116. PubMed ID: 35272264 [TBL] [Abstract][Full Text] [Related]
12. The development and evaluation of a fully automated markerless motion capture workflow. Needham L; Evans M; Wade L; Cosker DP; McGuigan MP; Bilzon JL; Colyer SL J Biomech; 2022 Nov; 144():111338. PubMed ID: 36252308 [TBL] [Abstract][Full Text] [Related]
13. Markerless motion capture using appearance and inertial data. Wong C; Zhang Z; Lo B; Yang GZ Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():6907-10. PubMed ID: 25571584 [TBL] [Abstract][Full Text] [Related]
14. Validation of a Commercially Available Markerless Motion-Capture System for Trunk and Lower Extremity Kinematics During a Jump-Landing Assessment. Mauntel TC; Cameron KL; Pietrosimone B; Marshall SW; Hackney AC; Padua DA J Athl Train; 2021 Feb; 56(2):177-190. PubMed ID: 33480993 [TBL] [Abstract][Full Text] [Related]
15. Validity of artificial intelligence-based markerless motion capture system for clinical gait analysis: Spatiotemporal results in healthy adults and adults with Parkinson's disease. Ripic Z; Signorile JF; Best TM; Jacobs KA; Nienhuis M; Whitelaw C; Moenning C; Eltoukhy M J Biomech; 2023 Jun; 155():111645. PubMed ID: 37216895 [TBL] [Abstract][Full Text] [Related]
16. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis. Horsak B; Prock K; Krondorfer P; Siragy T; Simonlehner M; Dumphart B J Biomech; 2024 Mar; 166():112049. PubMed ID: 38493576 [TBL] [Abstract][Full Text] [Related]
17. Automating Video-Based Two-Dimensional Motion Analysis in Sport? Implications for Gait Event Detection, Pose Estimation, and Performance Parameter Analysis. Mundt M; Colyer S; Wade L; Needham L; Evans M; Millett E; Alderson J Scand J Med Sci Sports; 2024 Jul; 34(7):e14693. PubMed ID: 38984681 [TBL] [Abstract][Full Text] [Related]
18. Automated Quantification of the Landing Error Scoring System With a Markerless Motion-Capture System. Mauntel TC; Padua DA; Stanley LE; Frank BS; DiStefano LJ; Peck KY; Cameron KL; Marshall SW J Athl Train; 2017 Nov; 52(11):1002-1009. PubMed ID: 29048200 [TBL] [Abstract][Full Text] [Related]
19. Validity of Using Automated Two-Dimensional Video Analysis to Measure Continuous Sagittal Plane Running Kinematics. Peebles AT; Carroll MM; Socha JJ; Schmitt D; Queen RM Ann Biomed Eng; 2021 Jan; 49(1):455-468. PubMed ID: 32705424 [TBL] [Abstract][Full Text] [Related]