BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 34516045)

  • 21. A probabilistic approach for validating protein NMR chemical shift assignments.
    Wang B; Wang Y; Wishart DS
    J Biomol NMR; 2010 Jun; 47(2):85-99. PubMed ID: 20446018
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application of data mining tools for classification of protein structural class from residue based averaged NMR chemical shifts.
    Kumar AV; Ali RF; Cao Y; Krishnan VV
    Biochim Biophys Acta; 2015 Oct; 1854(10 Pt A):1545-52. PubMed ID: 25758094
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Prediction of peak overlap in NMR spectra.
    Hefke F; Schmucki R; Güntert P
    J Biomol NMR; 2013 Jun; 56(2):113-23. PubMed ID: 23585271
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Protein three-dimensional structure determination and sequence-specific assignment of 13C and 15N-separated NOE data. A novel real-space ab initio approach.
    Kraulis PJ
    J Mol Biol; 1994 Nov; 243(4):696-718. PubMed ID: 7525970
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Resonance assignment of the NMR spectra of disordered proteins using a multi-objective non-dominated sorting genetic algorithm.
    Yang Y; Fritzsching KJ; Hong M
    J Biomol NMR; 2013 Nov; 57(3):281-96. PubMed ID: 24132778
    [TBL] [Abstract][Full Text] [Related]  

  • 26. COLMARppm: A Web Server Tool for the Accurate and Rapid Prediction of
    Rigel N; Li DW; Brüschweiler R
    Anal Chem; 2024 Jan; 96(2):701-709. PubMed ID: 38157361
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Backbone assignment and secondary structure of Rnd1, an unusual Rho family small GTPase.
    Cao S; Mao X; Liu D; Buck M
    Biomol NMR Assign; 2013 Oct; 7(2):121-8. PubMed ID: 22618864
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Easy and unambiguous sequential assignments of intrinsically disordered proteins by correlating the backbone 15N or 13C' chemical shifts of multiple contiguous residues in highly resolved 3D spectra.
    Yoshimura Y; Kulminskaya NV; Mulder FA
    J Biomol NMR; 2015 Feb; 61(2):109-21. PubMed ID: 25577242
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Prospects for resonance assignments in multidimensional solid-state NMR spectra of uniformly labeled proteins.
    Tycko R
    J Biomol NMR; 1996 Oct; 8(3):239-51. PubMed ID: 8953215
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Predicting the redox state and secondary structure of cysteine residues using multi-dimensional classification analysis of NMR chemical shifts.
    Wang CC; Lai WC; Chuang WJ
    J Biomol NMR; 2016 Sep; 66(1):55-68. PubMed ID: 27613298
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Automated amino acid side-chain NMR assignment of proteins using (13)C- and (15)N-resolved 3D [ (1)H, (1)H]-NOESY.
    Fiorito F; Herrmann T; Damberger FF; Wüthrich K
    J Biomol NMR; 2008 Sep; 42(1):23-33. PubMed ID: 18709333
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Secondary structural analysis of proteins based on (13)C chemical shift assignments in unresolved solid-state NMR spectra enhanced by fragmented structure database.
    Ikeda K; Egawa A; Fujiwara T
    J Biomol NMR; 2013 Feb; 55(2):189-200. PubMed ID: 23271376
    [TBL] [Abstract][Full Text] [Related]  

  • 33. NMR Backbone Assignment of Large Proteins by Using (13) Cα -Only Triple-Resonance Experiments.
    Wei Q; Chen J; Mi J; Zhang J; Ruan K; Wu J
    Chemistry; 2016 Jul; 22(28):9556-64. PubMed ID: 27276173
    [TBL] [Abstract][Full Text] [Related]  

  • 34. An efficient high-throughput resonance assignment procedure for structural genomics and protein folding research by NMR.
    Bhavesh NS; Panchal SC; Hosur RV
    Biochemistry; 2001 Dec; 40(49):14727-35. PubMed ID: 11732891
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Novel 2D triple-resonance NMR experiments for sequential resonance assignments of proteins.
    Ding K; Gronenborn AM
    J Magn Reson; 2002 Jun; 156(2):262-8. PubMed ID: 12165262
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Automated assignment of NMR chemical shifts using peak-particle dynamics simulation with the DYNASSIGN algorithm.
    Schmucki R; Yokoyama S; Güntert P
    J Biomol NMR; 2009 Feb; 43(2):97-109. PubMed ID: 19034675
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Linear discriminant analysis reveals hidden patterns in NMR chemical shifts of intrinsically disordered proteins.
    Romero JA; Putko P; Urbańczyk M; Kazimierczuk K; Zawadzka-Kazimierczuk A
    PLoS Comput Biol; 2022 Oct; 18(10):e1010258. PubMed ID: 36201530
    [TBL] [Abstract][Full Text] [Related]  

  • 38. NightShift: NMR shift inference by general hybrid model training--a framework for NMR chemical shift prediction.
    Dehof AK; Loew S; Lenhof HP; Hildebrandt A
    BMC Bioinformatics; 2013 Mar; 14():98. PubMed ID: 23496927
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Validation of archived chemical shifts through atomic coordinates.
    Rieping W; Vranken WF
    Proteins; 2010 Aug; 78(11):2482-9. PubMed ID: 20602353
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Unraveling the meaning of chemical shifts in protein NMR.
    Berjanskii MV; Wishart DS
    Biochim Biophys Acta Proteins Proteom; 2017 Nov; 1865(11 Pt B):1564-1576. PubMed ID: 28716441
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.