These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 34516086)

  • 21. Low-Afterglow CsI:Tl microcolumnar films for small animal high-speed microCT.
    Thacker SC; Singh B; Gaysinskiy V; Ovechkina EE; Miller SR; Brecher C; Nagarkar VV
    Nucl Instrum Methods Phys Res A; 2009 Jun; 604(1):89-92. PubMed ID: 20161152
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Band Gap and Defect Engineering Enhanced Scintillation from Ce
    Luo C; Jing Y; Hua Z; Sui Z; Wang C; Hu P; Zheng L; Qian S; Yang L; Sun X; Tang G; Cai H; Zhu Y; Ban H; Han J; Wang Z; Qiao X; Ren J; Zhang J
    ACS Appl Mater Interfaces; 2023 Oct; 15(39):46226-46235. PubMed ID: 37738374
    [TBL] [Abstract][Full Text] [Related]  

  • 23. High-stability double perovskite scintillator for flexible X-ray imaging.
    Li J; Hu Q; Xiao J; Yan ZG
    J Colloid Interface Sci; 2024 Oct; 671():725-731. PubMed ID: 38823113
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Prospective scintillation electron detectors for S(T)EM based on garnet film scintillators.
    Schauer P; Lalinský O; Kučera M
    Microsc Res Tech; 2019 Mar; 82(3):272-282. PubMed ID: 30589166
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Seed-Crystal-Induced Cold Sintering Toward Metal Halide Transparent Ceramic Scintillators.
    Han K; Sakhatskyi K; Jin J; Zhang Q; Kovalenko MV; Xia Z
    Adv Mater; 2022 Apr; 34(17):e2110420. PubMed ID: 35231955
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nearly-Unity Quantum Yield and 12-Hour Afterglow from a Transparent Perovskite of Cs
    Wang X; Zhang X; Yan S; Liu H; Zhang Y
    Angew Chem Int Ed Engl; 2022 Oct; 61(40):e202210853. PubMed ID: 35951470
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Dual heterogeneous interfaces enhance X-ray excited persistent luminescence for low-dose 3D imaging.
    Lei L; Yi M; Wang Y; Hua Y; Zhang J; Prasad PN; Xu S
    Nat Commun; 2024 Feb; 15(1):1140. PubMed ID: 38326310
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Large-Area Transparent Antimony-Based Perovskite Glass for High-Resolution X-ray Imaging.
    Feng T; Zhou Z; An Y; Chen L; Fu Y; Zhou S; Wang N; Zheng J; Sun C
    ACS Nano; 2024 Jul; 18(26):16715-16725. PubMed ID: 38876985
    [TBL] [Abstract][Full Text] [Related]  

  • 29. X-ray excited luminescence spectroscopy and imaging with NaGdF
    Ranasinghe M; Arifuzzaman M; Rajamanthrilage AC; Willoughby WR; Dickey A; McMillen C; Kolis JW; Bolding M; Anker JN
    RSC Adv; 2021 Sep; 11(50):31717-31726. PubMed ID: 35496840
    [TBL] [Abstract][Full Text] [Related]  

  • 30. NaCeF
    Zhong X; Wang X; Zhan G; Tang Y; Yao Y; Dong Z; Hou L; Zhao H; Zeng S; Hu J; Cheng L; Yang X
    Nano Lett; 2019 Nov; 19(11):8234-8244. PubMed ID: 31576757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. High-throughput production of LuAG-based highly luminescent thick film scintillators for radiation detection and imaging.
    Matsumoto S; Ito A
    Sci Rep; 2022 Nov; 12(1):19319. PubMed ID: 36369313
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Inorganic X-ray Scintillators Based on a Previously Unnoticed but Intrinsically Advantageous Metal Center.
    Wang Y; Wang Y; Dai X; Liu W; Yin X; Chen L; Zhai F; Diwu J; Zhang C; Zhou R; Chai Z; Liu N; Wang S
    Inorg Chem; 2019 Feb; 58(4):2807-2812. PubMed ID: 30701969
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The feasibility of NaGdF
    Zhang W; Zhang S; Gao P; Lan B; Li L; Zhang X; Li L; Lu H
    Med Phys; 2020 Feb; 47(2):662-671. PubMed ID: 31742714
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Study of a prototype high quantum efficiency thick scintillation crystal video-electronic portal imaging device.
    Samant SS; Gopal A
    Med Phys; 2006 Aug; 33(8):2783-91. PubMed ID: 16964854
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple doping of CsI:Tl crystals and its effect on afterglow.
    Ovechkina EE; Gaysinskiy V; Miller SR; Brecher C; Lempicki A; Nagarkar VV
    Radiat Meas; 2007 May; 42(4-5):541-544. PubMed ID: 18449339
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Highly bright multicolor tunable ultrasmall β-Na(Y,Gd)F₄:Ce,Tb,Eu/β-NaYF₄ core/shell nanocrystals.
    Kim SY; Woo K; Lim K; Lee K; Jang HS
    Nanoscale; 2013 Oct; 5(19):9255-63. PubMed ID: 23945563
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High Performance Dynamic X-ray Flexible Imaging Realized Using a Copper Iodide Cluster-Based MOF Microcrystal Scintillator.
    Peng QC; Si YB; Yuan JW; Yang Q; Gao ZY; Liu YY; Wang ZY; Li K; Zang SQ; Zhong Tang B
    Angew Chem Int Ed Engl; 2023 Oct; 62(40):e202308194. PubMed ID: 37366600
    [TBL] [Abstract][Full Text] [Related]  

  • 38. X-ray-excited optical luminescence of protein crystals: a new tool for studying radiation damage during diffraction data collection.
    Owen RL; Yorke BA; Pearson AR
    Acta Crystallogr D Biol Crystallogr; 2012 May; 68(Pt 5):505-10. PubMed ID: 22525748
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Characterization of scintillator-based detectors for few-ten-keV high-spatial-resolution x-ray imaging.
    Larsson JC; Lundström U; Hertz HM
    Med Phys; 2016 Jun; 43(6):2731-2740. PubMed ID: 27277020
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Highly efficient copper halide scintillators for high-performance and dynamic X-ray imaging.
    Zhou Q; Ren J; Xiao J; Lei L; Liao F; Di H; Wang C; Yang L; Chen Q; Yang X; Zhao Y; Han X
    Nanoscale; 2021 Dec; 13(47):19894-19902. PubMed ID: 34761770
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.