BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 34516089)

  • 1. Correlation of Bulk Degradation and Molecular Release from Enzymatically Degradable Polymeric Hydrogels.
    Wu N; Schultz KM
    Biomacromolecules; 2021 Nov; 22(11):4489-4500. PubMed ID: 34516089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tunable enzymatically degradable hydrogels for controlled cargo release with dynamic mechanical properties.
    Tanimoto R; Ebara M; Uto K
    Soft Matter; 2023 Aug; 19(33):6224-6233. PubMed ID: 37493066
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Degradation-Dependent Protein Release from Enzyme Sensitive Injectable Glycol Chitosan Hydrogel.
    Gohil SV; Padmanabhan A; Kan HM; Khanal M; Nair LS
    Tissue Eng Part A; 2021 Jul; 27(13-14):867-880. PubMed ID: 32940146
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of the Kinetics and Mechanism of Degradation of Human Mesenchymal Stem Cell-Laden Poly(ethylene glycol) Hydrogels.
    Mazzeo MS; Chai T; Daviran M; Schultz KM
    ACS Appl Bio Mater; 2019 Jan; 2(1):81-92. PubMed ID: 31555760
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatically-degradable alginate hydrogels promote cell spreading and in vivo tissue infiltration.
    Lueckgen A; Garske DS; Ellinghaus A; Mooney DJ; Duda GN; Cipitria A
    Biomaterials; 2019 Oct; 217():119294. PubMed ID: 31276949
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Material properties and cytocompatibility of injectable MMP degradable poly(lactide ethylene oxide fumarate) hydrogel as a carrier for marrow stromal cells.
    He X; Jabbari E
    Biomacromolecules; 2007 Mar; 8(3):780-92. PubMed ID: 17295540
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoinitiator-free synthesis of endothelial cell-adhesive and enzymatically degradable hydrogels.
    Jones DR; Marchant RE; von Recum H; Sen Gupta A; Kottke-Marchant K
    Acta Biomater; 2015 Feb; 13():52-60. PubMed ID: 25462848
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Self-crosslinking effect of chitosan and gelatin on alginate based hydrogels: Injectable in situ forming scaffolds.
    Naghizadeh Z; Karkhaneh A; Khojasteh A
    Mater Sci Eng C Mater Biol Appl; 2018 Aug; 89():256-264. PubMed ID: 29752097
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Determining How Human Mesenchymal Stem Cells Change Their Degradation Strategy in Response to Microenvironmental Stiffness.
    Daviran M; Catalano J; Schultz KM
    Biomacromolecules; 2020 Aug; 21(8):3056-3068. PubMed ID: 32559386
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enzymatically degradable mussel-inspired adhesive hydrogel.
    Brubaker CE; Messersmith PB
    Biomacromolecules; 2011 Dec; 12(12):4326-34. PubMed ID: 22059927
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Poly(glutamic acid) poly(ethylene glycol) hydrogels prepared by photoinduced polymerization: Synthesis, characterization, and preliminary release studies of protein drugs.
    Yang Z; Zhang Y; Markland P; Yang VC
    J Biomed Mater Res; 2002 Oct; 62(1):14-21. PubMed ID: 12124782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Novel chitosan hydrogel formed by ethylene glycol chitosan, 1,6-diisocyanatohexan and polyethylene glycol-400 for tissue engineering scaffold: in vitro and in vivo evaluation.
    Chen Z; Zhao M; Liu K; Wan Y; Li X; Feng G
    J Mater Sci Mater Med; 2014 Aug; 25(8):1903-13. PubMed ID: 24805882
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crosslinking Dynamics and Gelation Characteristics of Photo- and Thermally Polymerized Poly(Ethylene Glycol) Hydrogels.
    Sung J; Lee DG; Lee S; Park J; Jung HW
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32717929
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of gelation, degradation and physical properties of polyethylene glycol hydrogels through the chemical and physical identity of the crosslinker.
    Jain E; Hill L; Canning E; Sell SA; Zustiak SP
    J Mater Chem B; 2017 Apr; 5(14):2679-2691. PubMed ID: 32264047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nanostructured degradable macroporous hydrogel scaffolds with controllable internal morphologies via reactive electrospinning.
    Xu F; Gough I; Dorogin J; Sheardown H; Hoare T
    Acta Biomater; 2020 Mar; 104():135-146. PubMed ID: 31904560
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gelation characteristics and osteogenic differentiation of stromal cells in inert hydrolytically degradable micellar polyethylene glycol hydrogels.
    Moeinzadeh S; Barati D; He X; Jabbari E
    Biomacromolecules; 2012 Jul; 13(7):2073-86. PubMed ID: 22642902
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved vascularization of porous scaffolds through growth factor delivery from heparinized polyethylene glycol hydrogels.
    Janse van Rensburg A; Davies NH; Oosthuysen A; Chokoza C; Zilla P; Bezuidenhout D
    Acta Biomater; 2017 Feb; 49():89-100. PubMed ID: 27865963
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mechanical stabilization of proteolytically degradable polyethylene glycol dimethacrylate hydrogels through peptide interaction.
    Lim HJ; Khan Z; Lu X; Perera TH; Wilems TS; Ravivarapu KT; Smith Callahan LA
    Acta Biomater; 2018 Apr; 71():271-278. PubMed ID: 29526829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructuring PEG-fibrinogen hydrogels to control cellular morphogenesis.
    Frisman I; Seliktar D; Bianco-Peled H
    Biomaterials; 2011 Nov; 32(31):7839-46. PubMed ID: 21784517
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hydrolytically degradable poly(ethylene glycol) hydrogel scaffolds as a cell delivery vehicle: characterization of PC12 cell response.
    Zustiak SP; Pubill S; Ribeiro A; Leach JB
    Biotechnol Prog; 2013; 29(5):1255-64. PubMed ID: 24474590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.