These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

188 related articles for article (PubMed ID: 34516089)

  • 61. Potential of hydrogels based on poly(ethylene glycol) and sebacic acid as orthopedic tissue engineering scaffolds.
    Kim J; Hefferan TE; Yaszemski MJ; Lu L
    Tissue Eng Part A; 2009 Aug; 15(8):2299-307. PubMed ID: 19292677
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Effect of peptide and guest charge on the structural, mechanical and release properties of β-sheet forming peptides.
    Roberts D; Rochas C; Saiani A; Miller AF
    Langmuir; 2012 Nov; 28(46):16196-206. PubMed ID: 23088490
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inulin hydrogels as carriers for colonic drug targeting. Rheological characterization of the hydrogel formation and the hydrogel network.
    Vervoort L; Vinckier I; Moldenaers P; Van den Mooter G; Augustijns P; Kinget R
    J Pharm Sci; 1999 Feb; 88(2):209-14. PubMed ID: 9950640
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Rheological behavior of self-assembling PEG-beta-cyclodextrin/PEG-cholesterol hydrogels.
    van de Manakker F; Vermonden T; El Morabit N; van Nostrum CF; Hennink WE
    Langmuir; 2008 Nov; 24(21):12559-67. PubMed ID: 18828611
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering.
    Beamish JA; Zhu J; Kottke-Marchant K; Marchant RE
    J Biomed Mater Res A; 2010 Feb; 92(2):441-50. PubMed ID: 19191313
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Photopolymerization of cell-encapsulating hydrogels: crosslinking efficiency versus cytotoxicity.
    Mironi-Harpaz I; Wang DY; Venkatraman S; Seliktar D
    Acta Biomater; 2012 May; 8(5):1838-48. PubMed ID: 22285429
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterizing the degradation of alginate hydrogel for use in multilumen scaffolds for spinal cord repair.
    Shahriari D; Koffler J; Lynam DA; Tuszynski MH; Sakamoto JS
    J Biomed Mater Res A; 2016 Mar; 104(3):611-619. PubMed ID: 26488452
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Photo-cross-linked biodegradable hydrogels based on n-arm-poly(ethylene glycol), poly(ε-caprolactone) and/or methacrylic acid for controlled drug release.
    Hou P; Zhang N; Wu R; Xu W; Hou Z
    J Biomater Appl; 2017 Oct; 32(4):511-523. PubMed ID: 28899224
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Highly flexible and degradable dual setting systems based on PEG-hydrogels and brushite cement.
    Rödel M; Teßmar J; Groll J; Gbureck U
    Acta Biomater; 2018 Oct; 79():182-201. PubMed ID: 30149213
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Nondestructive evaluation of a new hydrolytically degradable and photo-clickable PEG hydrogel for cartilage tissue engineering.
    Neumann AJ; Quinn T; Bryant SJ
    Acta Biomater; 2016 Jul; 39():1-11. PubMed ID: 27180026
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Injectable hyaluronan-methylcellulose composite hydrogel crosslinked by polyethylene glycol for central nervous system tissue engineering.
    Zhuo F; Liu X; Gao Q; Wang Y; Hu K; Cai Q
    Mater Sci Eng C Mater Biol Appl; 2017 Dec; 81():1-7. PubMed ID: 28887951
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Improving gelation efficiency and cytocompatibility of visible light polymerized thiol-norbornene hydrogels via addition of soluble tyrosine.
    Shih H; Liu HY; Lin CC
    Biomater Sci; 2017 Feb; 5(3):589-599. PubMed ID: 28174779
    [TBL] [Abstract][Full Text] [Related]  

  • 73. In situ crosslinking of a biomimetic peptide-PEG hydrogel via thermally triggered activation of factor XIII.
    Sanborn TJ; Messersmith PB; Barron AE
    Biomaterials; 2002 Jul; 23(13):2703-10. PubMed ID: 12059019
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Characterization and properties of carboxymethyl cellulose hydrogels crosslinked by polyethylene glycol.
    Kono H
    Carbohydr Polym; 2014 Jun; 106():84-93. PubMed ID: 24721054
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Polyurethane Degradable Hydrogels Based on Cyclodextrin-Oligocaprolactone Derivatives.
    Diaconu AD; Logigan CL; Peptu CA; Ibanescu C; Harabagiu V; Peptu C
    Gels; 2023 Sep; 9(9):. PubMed ID: 37754436
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Release of model proteins and basic fibroblast growth factor from in situ forming degradable dextran hydrogels.
    Hiemstra C; Zhong Z; van Steenbergen MJ; Hennink WE; Feijen J
    J Control Release; 2007 Sep; 122(1):71-8. PubMed ID: 17658651
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Degradable poly(ethylene glycol) (PEG)-based hydrogels for spatiotemporal control of siRNA/nanoparticle delivery.
    Wang Y; Zhang S; Benoit DSW
    J Control Release; 2018 Oct; 287():58-66. PubMed ID: 30077736
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Self-healing PEG-poly(aspartic acid) hydrogel with rapid shape recovery and drug release.
    An H; Zhu L; Shen J; Li W; Wang Y; Qin J
    Colloids Surf B Biointerfaces; 2020 Jan; 185():110601. PubMed ID: 31675642
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Rheology of peptide- and protein-based physical hydrogels: are everyday measurements just scratching the surface?
    Sathaye S; Mbi A; Sonmez C; Chen Y; Blair DL; Schneider JP; Pochan DJ
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2015; 7(1):34-68. PubMed ID: 25266637
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Hydrolytic degradation and protein release studies of thermogelling polyurethane copolymers consisting of poly[(R)-3-hydroxybutyrate], poly(ethylene glycol), and poly(propylene glycol).
    Loh XJ; Goh SH; Li J
    Biomaterials; 2007 Oct; 28(28):4113-23. PubMed ID: 17573109
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.