BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 34516126)

  • 1. Sequence Determines the Switch in the Fibril Forming Regions in the Low-Complexity FUS Protein and Its Variants.
    Kumar A; Chakraborty D; Mugnai ML; Straub JE; Thirumalai D
    J Phys Chem Lett; 2021 Sep; 12(37):9026-9032. PubMed ID: 34516126
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular structure and interactions within amyloid-like fibrils formed by a low-complexity protein sequence from FUS.
    Lee M; Ghosh U; Thurber KR; Kato M; Tycko R
    Nat Commun; 2020 Nov; 11(1):5735. PubMed ID: 33184287
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Side Chain Hydrogen-Bonding Interactions within Amyloid-like Fibrils Formed by the Low-Complexity Domain of FUS: Evidence from Solid State Nuclear Magnetic Resonance Spectroscopy.
    Murray DT; Tycko R
    Biochemistry; 2020 Feb; 59(4):364-378. PubMed ID: 31895552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational fluctuations and phases in fused in sarcoma (FUS) low-complexity domain.
    Thirumalai D; Kumar A; Chakraborty D; Straub JE; Mugnai ML
    Biopolymers; 2024 Mar; 115(2):e23558. PubMed ID: 37399327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of FUS Protein Fibrils and Its Relevance to Self-Assembly and Phase Separation of Low-Complexity Domains.
    Murray DT; Kato M; Lin Y; Thurber KR; Hung I; McKnight SL; Tycko R
    Cell; 2017 Oct; 171(3):615-627.e16. PubMed ID: 28942918
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the Atomistic Mechanisms of Phosphorylation in Disrupting Liquid-Liquid Phase Separation and Aggregation of the FUS Low-Complexity Domain.
    Lao Z; Dong X; Liu X; Li F; Chen Y; Tang Y; Wei G
    J Chem Inf Model; 2022 Jul; 62(13):3227-3238. PubMed ID: 35709363
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Amyloid-Forming Segment Induces Aggregation of FUS-LC Domain from Phase Separation Modulated by Site-Specific Phosphorylation.
    Ding X; Sun F; Chen J; Chen L; Tobin-Miyaji Y; Xue S; Qiang W; Luo SZ
    J Mol Biol; 2020 Jan; 432(2):467-483. PubMed ID: 31805282
    [TBL] [Abstract][Full Text] [Related]  

  • 8. RRM domain of ALS/FTD-causing FUS characteristic of irreversible unfolding spontaneously self-assembles into amyloid fibrils.
    Lu Y; Lim L; Song J
    Sci Rep; 2017 Apr; 7(1):1043. PubMed ID: 28432364
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling the effects of phosphorylation on phase separation of the FUS low-complexity domain.
    Li M; Chen G; Zhang Z
    Biophys J; 2023 Jul; 122(13):2636-2645. PubMed ID: 37211763
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation.
    Luo F; Gui X; Zhou H; Gu J; Li Y; Liu X; Zhao M; Li D; Li X; Liu C
    Nat Struct Mol Biol; 2018 Apr; 25(4):341-346. PubMed ID: 29610493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The low-complexity domain of the FUS RNA binding protein self-assembles via the mutually exclusive use of two distinct cross-β cores.
    Kato M; McKnight SL
    Proc Natl Acad Sci U S A; 2021 Oct; 118(42):. PubMed ID: 34654750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Seeded fibrils of the germline variant of human λ-III immunoglobulin light chain FOR005 have a similar core as patient fibrils with reduced stability.
    Pradhan T; Annamalai K; Sarkar R; Huhn S; Hegenbart U; Schönland S; Fändrich M; Reif B
    J Biol Chem; 2020 Dec; 295(52):18474-18484. PubMed ID: 33093170
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Residue-by-Residue View of In Vitro FUS Granules that Bind the C-Terminal Domain of RNA Polymerase II.
    Burke KA; Janke AM; Rhine CL; Fawzi NL
    Mol Cell; 2015 Oct; 60(2):231-41. PubMed ID: 26455390
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conformational Fluctuations and Phases in Fused in Sarcoma (FUS) Low-Complexity Domain.
    Thirumalai D; Kumar A; Chakraborty D; Straub JE; Mugnai ML
    ArXiv; 2023 Jun; ():. PubMed ID: 36945688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Real-time observation of structure and dynamics during the liquid-to-solid transition of FUS LC.
    Berkeley RF; Kashefi M; Debelouchina GT
    Biophys J; 2021 Apr; 120(7):1276-1287. PubMed ID: 33607084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Post-translational modification sites are present in hydrophilic cavities of alpha-synuclein, tau, FUS, and TDP-43 fibrils: A molecular dynamics study.
    Kochen NN; Seaney D; Vasandani V; Murray M; Braun AR; Sachs JN
    Proteins; 2024 Jul; 92(7):854-864. PubMed ID: 38458997
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular interactions underlying liquid-liquid phase separation of the FUS low-complexity domain.
    Murthy AC; Dignon GL; Kan Y; Zerze GH; Parekh SH; Mittal J; Fawzi NL
    Nat Struct Mol Biol; 2019 Jul; 26(7):637-648. PubMed ID: 31270472
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ATP in solubilizing RNA-binding protein fused in sarcoma.
    Aida H; Shigeta Y; Harada R
    Proteins; 2022 Aug; 90(8):1606-1612. PubMed ID: 35297101
    [TBL] [Abstract][Full Text] [Related]  

  • 19. N-terminal acetylation modestly enhances phase separation and reduces aggregation of the low-complexity domain of RNA-binding protein fused in sarcoma.
    Bock AS; Murthy AC; Tang WS; Jovic N; Shewmaker F; Mittal J; Fawzi NL
    Protein Sci; 2021 Jul; 30(7):1337-1349. PubMed ID: 33547841
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity.
    Monahan Z; Ryan VH; Janke AM; Burke KA; Rhoads SN; Zerze GH; O'Meally R; Dignon GL; Conicella AE; Zheng W; Best RB; Cole RN; Mittal J; Shewmaker F; Fawzi NL
    EMBO J; 2017 Oct; 36(20):2951-2967. PubMed ID: 28790177
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.