These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

89 related articles for article (PubMed ID: 34516131)

  • 1. Discovery of Novel Chromone Derivatives as Potential Anti-TSWV Agents.
    Zan N; Li J; He H; Hu D; Song B
    J Agric Food Chem; 2021 Sep; 69(37):10819-10829. PubMed ID: 34516131
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Discovery of novel chromone derivatives containing a sulfonamide moiety as potential anti-TSWV agents.
    Jiang D; Zhang J; He H; Li J; Hu D; Song B
    Bioorg Med Chem Lett; 2021 Dec; 53():128431. PubMed ID: 34737160
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Synthesis, Anti-Tomato Spotted Wilt Virus Activities, and Interaction Mechanisms of Novel Dithioacetal Derivatives Containing a 4(3
    Zu G; Chen J; Song B; Hu D
    J Agric Food Chem; 2021 Dec; 69(48):14459-14466. PubMed ID: 34807587
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Piperazine Derivatives Containing the α-Ketoamide Moiety Discovered as Potential Anti-Tomato Spotted Wilt Virus Agents.
    Li J; Zan N; He H; Hu D; Song B
    J Agric Food Chem; 2023 Apr; 71(16):6301-6313. PubMed ID: 37052574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. First Report on Anti-TSWV Activities of Quinazolinone Derivatives Containing a Dithioacetal Moiety.
    Liu Y; Chen J; Xie D; Song B; Hu D
    J Agric Food Chem; 2021 Oct; 69(41):12135-12142. PubMed ID: 34623814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design, synthesis, antiviral activity, and mechanisms of novel ferulic acid derivatives containing amide moiety.
    Yuan T; Wang Z; Lan S; Gan X
    Bioorg Chem; 2022 Nov; 128():106054. PubMed ID: 35905694
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Design, Synthesis, Anti-Tomato Spotted Wilt Virus Activity, and Mechanism of Action of Thienopyrimidine-Containing Dithioacetal Derivatives.
    Wang Y; Luo Y; Hu D; Song B
    J Agric Food Chem; 2022 May; 70(20):6015-6025. PubMed ID: 35576166
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structure and function analysis of nucleocapsid protein of tomato spotted wilt virus interacting with RNA using homology modeling.
    Li J; Feng Z; Wu J; Huang Y; Lu G; Zhu M; Wang B; Mao X; Tao X
    J Biol Chem; 2015 Feb; 290(7):3950-61. PubMed ID: 25540203
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Discovery of Novel Thrips Vector Proteins That Bind to the Viral Attachment Protein of the Plant Bunyavirus Tomato Spotted Wilt Virus.
    Badillo-Vargas IE; Chen Y; Martin KM; Rotenberg D; Whitfield AE
    J Virol; 2019 Nov; 93(21):. PubMed ID: 31413126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Rescue of tomato spotted wilt virus entirely from complementary DNA clones.
    Feng M; Cheng R; Chen M; Guo R; Li L; Feng Z; Wu J; Xie L; Hong J; Zhang Z; Kormelink R; Tao X
    Proc Natl Acad Sci U S A; 2020 Jan; 117(2):1181-1190. PubMed ID: 31879355
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detection of the L protein of tomato spotted wilt virus.
    van Poelwijk F; Boye K; Oosterling R; Peters D; Goldbach R
    Virology; 1993 Nov; 197(1):468-70. PubMed ID: 8212587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of the nucleic acid binding properties of tomato spotted wilt virus nucleocapsid protein.
    Richmond KE; Chenault K; Sherwood JL; German TL
    Virology; 1998 Aug; 248(1):6-11. PubMed ID: 9705250
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Possible involvement of eEF1A in Tomato spotted wilt virus RNA synthesis.
    Komoda K; Ishibashi K; Kawamura-Nagaya K; Ishikawa M
    Virology; 2014 Nov; 468-470():81-87. PubMed ID: 25151062
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CONTROL OF VIRAL DISEASES TRANSMITTED IN A PERSISTENT MANNER BY THRIPS IN PEPPER (TOMATO SPOTTED WILT VIRUS).
    Fanigliulo A; Viggiano A; Gualco A; Crescenzi A
    Commun Agric Appl Biol Sci; 2014; 79(3):433-7. PubMed ID: 26080477
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Distribution of Tomato spotted wilt virus in dahlia plants.
    Asano S; Hirayama Y; Matsushita Y
    Lett Appl Microbiol; 2017 Apr; 64(4):297-303. PubMed ID: 28129432
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression and subcellular location of the NSM protein of tomato spotted wilt virus (TSWV), a putative viral movement protein.
    Kormelink R; Storms M; Van Lent J; Peters D; Goldbach R
    Virology; 1994 Apr; 200(1):56-65. PubMed ID: 8128638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Discovery of Novel Chromone Derivatives Containing a Sulfonamide Moiety as Anti-ToCV Agents through the Tomato Chlorosis Virus Coat Protein-Oriented Screening Method.
    Jiang D; Chen J; Zan N; Li C; Hu D; Song B
    J Agric Food Chem; 2021 Oct; 69(41):12126-12134. PubMed ID: 34633811
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Three decades of managing Tomato spotted wilt virus in peanut in southeastern United States.
    Srinivasan R; Abney MR; Culbreath AK; Kemerait RC; Tubbs RS; Monfort WS; Pappu HR
    Virus Res; 2017 Sep; 241():203-212. PubMed ID: 28549856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interaction of Tomato Spotted Wilt Tospovirus (TSWV) Glycoproteins with a Thrips Midgut Protein, a Potential Cellular Receptor for TSWV.
    Bandla MD; Campbell LR; Ullman DE; Sherwood JL
    Phytopathology; 1998 Feb; 88(2):98-104. PubMed ID: 18944977
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the intergenic region of tomato spotted wilt Tospovirus medium RNA segment.
    Bhat AI; Pappu SS; Pappu HR; Deom CM; Culbreath AK
    Virus Res; 1999 Jun; 61(2):161-70. PubMed ID: 10475086
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.