These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 34516218)

  • 1. Visual and postural eye-height information is flexibly coupled in the perception of virtual environments.
    von Castell C; Oberfeld D; Hecht H
    J Exp Psychol Hum Percept Perform; 2021 Aug; 47(8):1132-1148. PubMed ID: 34516218
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The importance of postural cues for determining eye height in immersive virtual reality.
    Leyrer M; Linkenauger SA; Bülthoff HH; Mohler BJ
    PLoS One; 2015; 10(5):e0127000. PubMed ID: 25993274
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulating the internal model of verticality by virtual reality and body-weight support walking: A pilot study.
    Odin A; Faletto-Passy D; Assaban F; Pérennou D
    Ann Phys Rehabil Med; 2018 Sep; 61(5):292-299. PubMed ID: 30031891
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Simulated eye height impacts size perception differently depending on real-world posture.
    Ghasemi F; Harris LR; Jörges B
    Sci Rep; 2023 Nov; 13(1):20075. PubMed ID: 37974023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Spatially incongruent sounds affect visual localization in virtual environments.
    Liu D; Rau PP
    Atten Percept Psychophys; 2020 May; 82(4):2067-2075. PubMed ID: 31900858
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Postural responses to sinusoidal modulations of viewpoint position in a virtual environment.
    Garner JJ; D'Zmura M
    Exp Brain Res; 2020 Jun; 238(6):1385-1398. PubMed ID: 32361912
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fear of heights shapes postural responses to vibration-induced balance perturbation at virtual height.
    Bzdúšková D; Marko M; Hirjaková Z; Riečanský I; Kimijanová J
    Front Hum Neurosci; 2023; 17():1229484. PubMed ID: 37771346
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Human postural responses to motion of real and virtual visual environments under different support base conditions.
    Mergner T; Schweigart G; Maurer C; Blümle A
    Exp Brain Res; 2005 Dec; 167(4):535-56. PubMed ID: 16132969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Familiar size affects perception differently in virtual reality and the real world.
    Rzepka AM; Hussey KJ; Maltz MV; Babin K; Wilcox LM; Culham JC
    Philos Trans R Soc Lond B Biol Sci; 2023 Jan; 378(1869):20210464. PubMed ID: 36511414
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The observer's perspective determines which cues are used when interpreting pointing gestures.
    Krause LM; Herbort O
    J Exp Psychol Hum Percept Perform; 2021 Sep; 47(9):1209-1225. PubMed ID: 34694850
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complexity of postural sway affects affordance perception of reachability in virtual reality.
    Masoner H; Hajnal A; Clark JD; Dowell C; Surber T; Funkhouser A; Doyon J; Legradi G; Samu K; Wagman JB
    Q J Exp Psychol (Hove); 2020 Dec; 73(12):2362-2375. PubMed ID: 32640869
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Exploring emotional-modulation of visually evoked postural responses through virtual reality.
    Nielsen EI; Cleworth TW; Carpenter MG
    Neurosci Lett; 2022 Apr; 777():136586. PubMed ID: 35331814
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Subjective vertical and postural activity.
    Luyat M; Ohlmann T; Barraud PA
    Acta Psychol (Amst); 1997 Feb; 95(2):181-93. PubMed ID: 9062064
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Egocentric Distance Perception: A Comparative Study Investigating Differences Between Real and Virtual Environments.
    Feldstein IT; Kölsch FM; Konrad R
    Perception; 2020 Sep; 49(9):940-967. PubMed ID: 33002392
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using biomechanics to investigate the effect of VR on eye vergence system.
    Iskander J; Hossny M; Nahavandi S
    Appl Ergon; 2019 Nov; 81():102883. PubMed ID: 31422246
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of visual input on postural stability in young adults with chronic motion sensitivity: A controlled cross-sectional study.
    Alharbi AA; Johnson EG; Albalwi AA; Daher NS; Cordett TK; Ambode OI; Alshehri FH
    J Vestib Res; 2017; 27(4):225-231. PubMed ID: 29081425
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Virtual postural threat facilitates the detection of visual stimuli.
    Vermehren M; Carpenter MG
    Neurosci Lett; 2020 Sep; 736():135298. PubMed ID: 32771602
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Does stereopsis improve face identification? A study using a virtual reality display with integrated eye-tracking and pupillometry.
    Liu H; Laeng B; Czajkowski NO
    Acta Psychol (Amst); 2020 Oct; 210():103142. PubMed ID: 32836112
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Postural and visual aftereffects to a slanted floor in lying and sitting positions.
    Higashiyama A; Yamazaki T
    Vision Res; 2022 Oct; 199():108077. PubMed ID: 35716464
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of visual motion consistent or inconsistent with gravity on postural sway.
    Balestrucci P; Daprati E; Lacquaniti F; Maffei V
    Exp Brain Res; 2017 Jul; 235(7):1999-2010. PubMed ID: 28326440
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.