These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34516218)

  • 21. The importance of perceived relative motion in the control of posture.
    Kelly JW; Loomis JM; Beall AC
    Exp Brain Res; 2005 Mar; 161(3):285-92. PubMed ID: 15502985
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Effects of visually simulated roll motion on vection and postural stabilization.
    Tanahashi S; Ujike H; Kozawa R; Ukai K
    J Neuroeng Rehabil; 2007 Oct; 4():39. PubMed ID: 17922922
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Examining the role of depth information in contextual cuing using a virtual reality visual search task.
    Beesley T; Yun Tou Y; Walsh J
    J Exp Psychol Hum Percept Perform; 2022 Dec; 48(12):1313-1324. PubMed ID: 36227325
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Dyslexic children suffer from less informative visual cues to control posture.
    Razuk M; Barela JA
    Res Dev Disabil; 2014 Sep; 35(9):1988-94. PubMed ID: 24864051
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Brain responses to virtual reality visual motion stimulation are affected by neurotic personality traits in patients with persistent postural-perceptual dizziness.
    Passamonti L; Riccelli R; Lacquaniti F; Staab JP; Indovina I
    J Vestib Res; 2018; 28(5-6):369-378. PubMed ID: 30856138
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fashion versus perception: the impact of surface lightness on the perceived dimensions of interior space.
    Oberfeld D; Hecht H
    Hum Factors; 2011 Jun; 53(3):284-98. PubMed ID: 21830513
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Modulation of visually evoked postural responses by contextual visual, haptic and auditory information: a 'virtual reality check'.
    Meyer GF; Shao F; White MD; Hopkins C; Robotham AJ
    PLoS One; 2013; 8(6):e67651. PubMed ID: 23840760
    [TBL] [Abstract][Full Text] [Related]  

  • 28. The effects of exercise on perception of verticality in adolescent idiopathic scoliosis.
    Yagci G; Yakut Y; Simsek E
    Physiother Theory Pract; 2018 Aug; 34(8):579-588. PubMed ID: 29308950
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Effect of Eye Height on Estimated Slopes of Hills.
    Bridgeman B; Cooke I
    Perception; 2015; 44(7):755-63. PubMed ID: 26541053
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Factors associated with dynamic balance in people with Persistent Postural Perceptual Dizziness (PPPD): a cross-sectional study using a virtual-reality Four Square Step Test.
    Aharoni MMH; Lubetzky AV; Arie L; Krasovsky T
    J Neuroeng Rehabil; 2021 Mar; 18(1):55. PubMed ID: 33766072
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Postural adaptation in elderly patients with instability and risk of falling after balance training using a virtual-reality system.
    Suárez H; Suárez A; Lavinsky L
    Int Tinnitus J; 2006; 12(1):41-4. PubMed ID: 17147038
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Head jitter enhances three-dimensional motion perception.
    Fulvio JM; Miao H; Rokers B
    J Vis; 2021 Mar; 21(3):12. PubMed ID: 33687429
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Using virtual reality to assess dynamic self-motion and landmark cues for spatial updating in children and adults.
    Barhorst-Cates EM; Stoker J; Stefanucci JK; Creem-Regehr SH
    Mem Cognit; 2021 Apr; 49(3):572-585. PubMed ID: 33108632
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans.
    Nishiike S; Okazaki S; Watanabe H; Akizuki H; Imai T; Uno A; Kitahara T; Horii A; Takeda N; Inohara H
    J Med Invest; 2013; 60(3-4):236-9. PubMed ID: 24190041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Use of cues in virtual reality depends on visual feedback.
    Fulvio JM; Rokers B
    Sci Rep; 2017 Nov; 7(1):16009. PubMed ID: 29167491
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of pictorial depth cues, binocular disparity cues and motion parallax depth cues on lightness perception in three-dimensional virtual scenes.
    Kitazaki M; Kobiki H; Maloney LT
    PLoS One; 2008 Sep; 3(9):e3177. PubMed ID: 18781201
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Nonlinear postural control in response to visual translation.
    Ravaioli E; Oie KS; Kiemel T; Chiari L; Jeka JJ
    Exp Brain Res; 2005 Jan; 160(4):450-9. PubMed ID: 15480604
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled Rotation of Human Observers in a Virtual Reality Environment.
    Falconbridge M; Falconbridge P; Badcock DR
    J Vis Exp; 2022 Apr; (182):. PubMed ID: 35532262
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Postural and cortical responses following visual occlusion in standing and sitting tasks.
    Goh KL; Morris S; Lee WL; Ring A; Tan T
    Exp Brain Res; 2017 Jun; 235(6):1875-1884. PubMed ID: 28303326
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Virtual reality applications in improving postural control and minimizing falls.
    Virk S; McConville KM
    Conf Proc IEEE Eng Med Biol Soc; 2006; 2006():2694-7. PubMed ID: 17946975
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.