These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 34516283)
1. Differential Surface Competition and Biofilm Invasion Strategies of Pseudomonas aeruginosa PA14 and PAO1. Kasetty S; Katharios-Lanwermeyer S; O'Toole GA; Nadell CD J Bacteriol; 2021 Oct; 203(22):e0026521. PubMed ID: 34516283 [TBL] [Abstract][Full Text] [Related]
2. Social Cooperativity of Bacteria during Reversible Surface Attachment in Young Biofilms: a Quantitative Comparison of Pseudomonas aeruginosa PA14 and PAO1. Lee CK; Vachier J; de Anda J; Zhao K; Baker AE; Bennett RR; Armbruster CR; Lewis KA; Tarnopol RL; Lomba CJ; Hogan DA; Parsek MR; O'Toole GA; Golestanian R; Wong GCL mBio; 2020 Feb; 11(1):. PubMed ID: 32098815 [TBL] [Abstract][Full Text] [Related]
3. In vivo growth of Pseudomonas aeruginosa strains PAO1 and PA14 and the hypervirulent strain LESB58 in a rat model of chronic lung infection. Kukavica-Ibrulj I; Bragonzi A; Paroni M; Winstanley C; Sanschagrin F; O'Toole GA; Levesque RC J Bacteriol; 2008 Apr; 190(8):2804-13. PubMed ID: 18083816 [TBL] [Abstract][Full Text] [Related]
4. The Versatile Pseudomonas aeruginosa Biofilm Matrix Protein CdrA Promotes Aggregation through Different Extracellular Exopolysaccharide Interactions. Reichhardt C; Jacobs HM; Matwichuk M; Wong C; Wozniak DJ; Parsek MR J Bacteriol; 2020 Sep; 202(19):. PubMed ID: 32661078 [No Abstract] [Full Text] [Related]
5. Catheter-associated urinary tract infection by Pseudomonas aeruginosa is mediated by exopolysaccharide-independent biofilms. Cole SJ; Records AR; Orr MW; Linden SB; Lee VT Infect Immun; 2014 May; 82(5):2048-58. PubMed ID: 24595142 [TBL] [Abstract][Full Text] [Related]
6. Identification of psl, a locus encoding a potential exopolysaccharide that is essential for Pseudomonas aeruginosa PAO1 biofilm formation. Jackson KD; Starkey M; Kremer S; Parsek MR; Wozniak DJ J Bacteriol; 2004 Jul; 186(14):4466-75. PubMed ID: 15231778 [TBL] [Abstract][Full Text] [Related]
7. Thermoregulation of Kim S; Li XH; Hwang HJ; Lee JH Appl Environ Microbiol; 2020 Oct; 86(22):. PubMed ID: 32917757 [TBL] [Abstract][Full Text] [Related]
8. Pseudomonas aeruginosa-plant root interactions. Pathogenicity, biofilm formation, and root exudation. Walker TS; Bais HP; Déziel E; Schweizer HP; Rahme LG; Fall R; Vivanco JM Plant Physiol; 2004 Jan; 134(1):320-31. PubMed ID: 14701912 [TBL] [Abstract][Full Text] [Related]
10. Analysis of Pseudomonas aeruginosa biofilm membrane vesicles supports multiple mechanisms of biogenesis. Cooke AC; Nello AV; Ernst RK; Schertzer JW PLoS One; 2019; 14(2):e0212275. PubMed ID: 30763382 [TBL] [Abstract][Full Text] [Related]
11. Involvement of stress-related genes polB and PA14_46880 in biofilm formation of Pseudomonas aeruginosa. Alshalchi SA; Anderson GG Infect Immun; 2014 Nov; 82(11):4746-57. PubMed ID: 25156741 [TBL] [Abstract][Full Text] [Related]
12. Dictyostelium transcriptional responses to Pseudomonas aeruginosa: common and specific effects from PAO1 and PA14 strains. Carilla-Latorre S; Calvo-Garrido J; Bloomfield G; Skelton J; Kay RR; Ivens A; Martinez JL; Escalante R BMC Microbiol; 2008 Jun; 8():109. PubMed ID: 18590548 [TBL] [Abstract][Full Text] [Related]
13. Chemical analysis of cellular and extracellular carbohydrates of a biofilm-forming strain Pseudomonas aeruginosa PA14. Coulon C; Vinogradov E; Filloux A; Sadovskaya I PLoS One; 2010 Dec; 5(12):e14220. PubMed ID: 21151973 [TBL] [Abstract][Full Text] [Related]
14. Iron-regulated expression of alginate production, mucoid phenotype, and biofilm formation by Pseudomonas aeruginosa. Wiens JR; Vasil AI; Schurr MJ; Vasil ML mBio; 2014 Feb; 5(1):e01010-13. PubMed ID: 24496793 [TBL] [Abstract][Full Text] [Related]
15. Type VI secretion system of Pseudomonas aeruginosa is associated with biofilm formation but not environmental adaptation. Chen L; Zou Y; Kronfl AA; Wu Y Microbiologyopen; 2020 Mar; 9(3):e991. PubMed ID: 31961499 [TBL] [Abstract][Full Text] [Related]
16. Alginate is not a significant component of the extracellular polysaccharide matrix of PA14 and PAO1 Pseudomonas aeruginosa biofilms. Wozniak DJ; Wyckoff TJ; Starkey M; Keyser R; Azadi P; O'Toole GA; Parsek MR Proc Natl Acad Sci U S A; 2003 Jun; 100(13):7907-12. PubMed ID: 12810959 [TBL] [Abstract][Full Text] [Related]
17. Biofilm differentiation and dispersal in mucoid Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Kirov SM; Webb JS; O'May CY; Reid DW; Woo JKK; Rice SA; Kjelleberg S Microbiology (Reading); 2007 Oct; 153(Pt 10):3264-3274. PubMed ID: 17906126 [TBL] [Abstract][Full Text] [Related]
18. Distinct roles of extracellular polymeric substances in Pseudomonas aeruginosa biofilm development. Yang L; Hu Y; Liu Y; Zhang J; Ulstrup J; Molin S Environ Microbiol; 2011 Jul; 13(7):1705-17. PubMed ID: 21605307 [TBL] [Abstract][Full Text] [Related]
19. Distinct Screening Approaches Uncover PA14_36820 and RecA as Negative Regulators of Biofilm Phenotypes in Pseudomonas aeruginosa PA14. Yahya AH; Harston SR; Colton WL; Cabeen MT Microbiol Spectr; 2023 Mar; 11(2):e0377422. PubMed ID: 36971546 [TBL] [Abstract][Full Text] [Related]
20. Inhibition of quorum-sensing-dependent virulence factors and biofilm formation of clinical and environmental Pseudomonas aeruginosa strains by ZnO nanoparticles. García-Lara B; Saucedo-Mora MÁ; Roldán-Sánchez JA; Pérez-Eretza B; Ramasamy M; Lee J; Coria-Jimenez R; Tapia M; Varela-Guerrero V; García-Contreras R Lett Appl Microbiol; 2015 Sep; 61(3):299-305. PubMed ID: 26084709 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]