These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
545 related articles for article (PubMed ID: 34516345)
21. Suppression of coal dust by microbially induced carbonate precipitation usingStaphylococcus succinus. Song W; Yang Y; Qi R; Li J; Pan X Environ Sci Pollut Res Int; 2019 Dec; 26(35):35968-35977. PubMed ID: 31709483 [TBL] [Abstract][Full Text] [Related]
22. Study on coal dust diffusion law and new pneumatic spiral spray dedusting technology at transfer point of mine cross roadway. Jing D; Liu H; Zhang T; Ge S; Ren S; Ma M PLoS One; 2022; 17(8):e0272304. PubMed ID: 35994466 [TBL] [Abstract][Full Text] [Related]
23. A green, environment-friendly, high-consolidation-strength composite dust suppressant derived from xanthan gum. Li M; Zhao Y; Bian S; Qiao J; Hu X; Yu S Environ Sci Pollut Res Int; 2022 Jan; 29(5):7489-7502. PubMed ID: 34476699 [TBL] [Abstract][Full Text] [Related]
24. Prediction of road dust concentration in open-pit coal mines based on multivariate mixed model. Wang M; Yang Z; Tai C; Zhang F; Zhang Q; Shen K; Guo C PLoS One; 2023; 18(4):e0284815. PubMed ID: 37099504 [TBL] [Abstract][Full Text] [Related]
25. Effect of spraying on coal dust diffusion in a coal mine based on a numerical simulation. Ma Q; Nie W; Yang S; Xu C; Peng H; Liu Z; Guo C; Cai X Environ Pollut; 2020 Sep; 264():114717. PubMed ID: 32417573 [TBL] [Abstract][Full Text] [Related]
26. Numerical simulation and field experiment study on onboard dust removal technology based on airflow-dust pollution dispersion characteristics. Mo J; Yang J; Ma W; Chen F; Zhang S Environ Sci Pollut Res Int; 2020 Jan; 27(2):1721-1733. PubMed ID: 31755065 [TBL] [Abstract][Full Text] [Related]
27. Exposure to Harmful Dusts on Fully Powered Longwall Coal Mines in Poland. Brodny J; Tutak M Int J Environ Res Public Health; 2018 Aug; 15(9):. PubMed ID: 30150562 [TBL] [Abstract][Full Text] [Related]
28. Identification and monitoring of coal dust pollution in Wucaiwan mining area, Xinjiang (China) using Landsat derived enhanced coal dust index. Xia N; Hai W; Song G; Tang M PLoS One; 2022; 17(4):e0266517. PubMed ID: 35395022 [TBL] [Abstract][Full Text] [Related]
29. Study on the physicochemical characteristics and dust suppression performance of new type chemical dust suppressant for copper mine pavement. Huang Z; Huang Y; Yang Z; Zhang J; Zhang Y; Gao Y; Shao Z; Zhang L Environ Sci Pollut Res Int; 2021 Nov; 28(42):59640-59651. PubMed ID: 34143387 [TBL] [Abstract][Full Text] [Related]
30. Thermogravimetric analysis of respirable coal mine dust for simple source apportionment. Jaramillo L; Agioutanti E; Ghaychi Afrouz S; Keles C; Sarver E J Occup Environ Hyg; 2022 Sep; 19(9):568-579. PubMed ID: 35853145 [TBL] [Abstract][Full Text] [Related]
31. Synthesis and performance characterization of an efficient coal dust suppressant for synergistic combustion with coal dust. Fan T; Liu Z; Ouyang J; Li M J Environ Manage; 2020 Sep; 269():110854. PubMed ID: 32561025 [TBL] [Abstract][Full Text] [Related]
32. A novel approach to forecast dust concentration in open pit mines by integrating meteorological parameters and production intensity. Wang Z; Zhou W; Jiskani IM; Yang Y; Yan J; Luo H; Han J Environ Sci Pollut Res Int; 2023 Nov; 30(53):114591-114609. PubMed ID: 37861844 [TBL] [Abstract][Full Text] [Related]
33. Synthesis and Performance of a Novel High-Efficiency Coal Dust Suppressant Based on Self-Healing Gel. Ding J; Zhou G; Liu D; Jiang W; Wei Z; Dong X Environ Sci Technol; 2020 Jul; 54(13):7992-8000. PubMed ID: 32459481 [TBL] [Abstract][Full Text] [Related]
34. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust. Seaman CE; Shahan MR; Beck TW; Mischler SE J Occup Environ Hyg; 2018 Mar; 15(3):214-225. PubMed ID: 29200377 [TBL] [Abstract][Full Text] [Related]
35. Comprehensive Chemical Dust Suppressant Performance Evaluation and Optimization Method. Li M; Wang R; Li G; Song X; Yang H; Lai H Int J Environ Res Public Health; 2022 May; 19(9):. PubMed ID: 35565025 [TBL] [Abstract][Full Text] [Related]
36. Experimental study on ratio optimization and application of improved bonded dust suppressant based on wetting effect. Li M; Yin W; Tang J; Qiu L; Fei X; Yang H; Tang Z; Chen F; Qin X; Li G J Air Waste Manag Assoc; 2023 May; 73(5):394-402. PubMed ID: 36912504 [TBL] [Abstract][Full Text] [Related]
37. Examination of water spray airborne coal dust capture with three wetting agents. Organiscak JA Trans Soc Min Metall Explor Inc; 2013; 334(1):427-434. PubMed ID: 26251565 [TBL] [Abstract][Full Text] [Related]
38. [Investigation on the status of respirable dust hazards in underground mines in China]. Wang XT; Li JY; Bie FS Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi; 2021 Jul; 39(7):527-530. PubMed ID: 34365765 [No Abstract] [Full Text] [Related]
39. Preparation and Characterization of a Composite Dust Suppressant for Coal Mines. Jin H; Zhang Y; Chen K; Niu K; Wu G; Wei X; Wang H Polymers (Basel); 2020 Dec; 12(12):. PubMed ID: 33317125 [TBL] [Abstract][Full Text] [Related]
40. Synthesis and performance determination of a glycosylated modified covalent polymer dust suppressant. Dong H; Yu H; Xu R; Ye Y; Wang R; Cheng W Int J Biol Macromol; 2023 Mar; 231():123287. PubMed ID: 36652985 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]