These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 34516370)

  • 41. Improving Grasp Function After Spinal Cord Injury With a Soft Robotic Glove.
    Correia C; Nuckols K; Wagner D; Zhou YM; Clarke M; Orzel D; Solinsky R; Paganoni S; Walsh CJ
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1407-1415. PubMed ID: 32305931
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A Preliminary Study to Design and Evaluate Pneumatically Controlled Soft Robotic Actuators for a Repetitive Hand Rehabilitation Task.
    Rieger C; Desai J
    Biomimetics (Basel); 2022 Sep; 7(4):. PubMed ID: 36278696
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A novel BCI-controlled pneumatic glove system for home-based neurorehabilitation.
    Coffey AL; Leamy DJ; Ward TE
    Annu Int Conf IEEE Eng Med Biol Soc; 2014; 2014():3622-5. PubMed ID: 25570775
    [TBL] [Abstract][Full Text] [Related]  

  • 44. A Magnetic Resonance Compatible Soft Wearable Robotic Glove for Hand Rehabilitation and Brain Imaging.
    Hong Kai Yap ; Kamaldin N; Jeong Hoon Lim ; Nasrallah FA; Goh JCH; Chen-Hua Yeow
    IEEE Trans Neural Syst Rehabil Eng; 2017 Jun; 25(6):782-793. PubMed ID: 28113591
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Effect on Hand Function After Six-week Use of a Wearable Soft-Robotic Glove Assisting ADL: Interim Results of an Ongoing Clinical Study.
    Prange-Lasonder GB; Kottink AIR; Nikamp CDM; Buurke JH; Bos F; Van Der Sluis CK; Van Den Broek M; Onneweer B; Stolwijk-Swuste JM; Brink SM; Voet NBM; Rietman JS
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176120
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Use of a pneumatic glove for hand rehabilitation following stroke.
    Connelly L; Stoykov ME; Jia Y; Toro ML; Kenyon RV; Kamper DG
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2434-7. PubMed ID: 19965204
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Development and feasibility of a soft pneumatic-robotic glove to assist impaired hand function in quadriplegia patients: A pilot study.
    Jiryaei Z; Alvar AA; Bani MA; Vahedi M; Jafarpisheh AS; Razfar N
    J Bodyw Mov Ther; 2021 Jul; 27():731-736. PubMed ID: 34391314
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Functional electrical stimulation mediated by iterative learning control and 3D robotics reduces motor impairment in chronic stroke.
    Meadmore KL; Hughes AM; Freeman CT; Cai Z; Tong D; Burridge JH; Rogers E
    J Neuroeng Rehabil; 2012 Jun; 9():32. PubMed ID: 22676920
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A compact valveless pressure control source for soft rehabilitation glove.
    Ahmadjou A; Sadeghi S; Zareinejad M; Talebi HA
    Int J Med Robot; 2021 Oct; 17(5):e2298. PubMed ID: 34097353
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Training finger individuation with a mechatronic-virtual reality system leads to improved fine motor control post-stroke.
    Thielbar KO; Lord TJ; Fischer HC; Lazzaro EC; Barth KC; Stoykov ME; Triandafilou KM; Kamper DG
    J Neuroeng Rehabil; 2014 Dec; 11():171. PubMed ID: 25542201
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Real time control and fabrication of a soft robotic glove by two parallel sensors with MBD approach.
    Rakhtala SM; Ghayebi R
    Med Eng Phys; 2022 Feb; 100():103743. PubMed ID: 35144730
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Subject-specific, Impairment-based Robotic Training of Functional Upper Limb Movements.
    Nguyen H; Vermillion BC; Phan TQ; Lee SW
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():4878-4881. PubMed ID: 33019082
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adaptive model-based assistive control for pneumatic direct driven soft rehabilitation robots.
    Wilkening A; Ivlev O
    IEEE Int Conf Rehabil Robot; 2013 Jun; 2013():6650354. PubMed ID: 24187173
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Electromechanical and robot-assisted arm training for improving activities of daily living, arm function, and arm muscle strength after stroke.
    Mehrholz J; Pohl M; Platz T; Kugler J; Elsner B
    Cochrane Database Syst Rev; 2015 Nov; 2015(11):CD006876. PubMed ID: 26559225
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Robotic Assistance for Training Finger Movement Using a Hebbian Model: A Randomized Controlled Trial.
    Rowe JB; Chan V; Ingemanson ML; Cramer SC; Wolbrecht ET; Reinkensmeyer DJ
    Neurorehabil Neural Repair; 2017 Aug; 31(8):769-780. PubMed ID: 28803535
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Home-based Computer Assisted Arm Rehabilitation (hCAAR) robotic device for upper limb exercise after stroke: results of a feasibility study in home setting.
    Sivan M; Gallagher J; Makower S; Keeling D; Bhakta B; O'Connor RJ; Levesley M
    J Neuroeng Rehabil; 2014 Dec; 11():163. PubMed ID: 25495889
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Development and Implementation of an End-Effector Upper Limb Rehabilitation Robot for Hemiplegic Patients with Line and Circle Tracking Training.
    Liu Y; Li C; Ji L; Bi S; Zhang X; Huo J; Ji R
    J Healthc Eng; 2017; 2017():4931217. PubMed ID: 29065614
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Effects of robot assistive upper extremity rehabilitation on motor and cognitive recovery, the quality of life, and activities of daily living in stroke patients.
    Zengin-Metli D; Özbudak-Demir S; Eraktaş İ; Binay-Safer V; Ekiz T
    J Back Musculoskelet Rehabil; 2018; 31(6):1059-1064. PubMed ID: 29966188
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Online learning and adaptation of patient support during ADL training.
    Guidali M; Schlink P; Duschau-Wicke A; Riener R
    IEEE Int Conf Rehabil Robot; 2011; 2011():5975434. PubMed ID: 22275635
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Design and control of RUPERT: a device for robotic upper extremity repetitive therapy.
    Sugar TG; He J; Koeneman EJ; Koeneman JB; Herman R; Huang H; Schultz RS; Herring DE; Wanberg J; Balasubramanian S; Swenson P; Ward JA
    IEEE Trans Neural Syst Rehabil Eng; 2007 Sep; 15(3):336-46. PubMed ID: 17894266
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.