These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 34516580)
1. Effective inhibition of Clostridioides difficile by the novel peptide CM-A. Arthithanyaroj S; Chankhamhaengdecha S; Chaisri U; Aunpad R; Aroonnual A PLoS One; 2021; 16(9):e0257431. PubMed ID: 34516580 [TBL] [Abstract][Full Text] [Related]
2. Characterization of antimicrobial activity against Listeria and cytotoxicity of native melittin and its mutant variants. Wu X; Singh AK; Wu X; Lyu Y; Bhunia AK; Narsimhan G Colloids Surf B Biointerfaces; 2016 Jul; 143():194-205. PubMed ID: 27011349 [TBL] [Abstract][Full Text] [Related]
3. A new phenothiazine derivate is active against Clostridioides difficile and shows low cytotoxicity. Ronco T; Aragao FM; Saaby L; Christensen JB; Permin A; Williams AR; Thamsborg SM; Olsen RH PLoS One; 2021; 16(10):e0258207. PubMed ID: 34597343 [TBL] [Abstract][Full Text] [Related]
4. Repurposing a platelet aggregation inhibitor ticagrelor as an antimicrobial against Clostridioides difficile. Phanchana M; Phetruen T; Harnvoravongchai P; Raksat P; Ounjai P; Chankhamhaengdecha S; Janvilisri T Sci Rep; 2020 Apr; 10(1):6497. PubMed ID: 32300130 [TBL] [Abstract][Full Text] [Related]
5. Nucleation and growth of pores in 1,2-Dimyristoyl-sn-glycero-3-phosphocholine (DMPC) / cholesterol bilayer by antimicrobial peptides melittin, its mutants and cecropin P1. Lyu Y; Fitriyanti M; Narsimhan G Colloids Surf B Biointerfaces; 2019 Jan; 173():121-127. PubMed ID: 30278360 [TBL] [Abstract][Full Text] [Related]
6. A rationally designed antimicrobial peptide from structural and functional insights of Alanis E; Aguilar F; Banaei N; Dean FB; Villarreal A; Alanis M; Lozano K; Bullard JM; Zhang Y Microbiol Spectr; 2024 Mar; 12(3):e0277323. PubMed ID: 38329351 [TBL] [Abstract][Full Text] [Related]
7. Aryl-alkyl-lysines: Novel agents for treatment of C. difficile infection. Ghosh C; AbdelKhalek A; Mohammad H; Seleem MN; Haldar J Sci Rep; 2020 Mar; 10(1):5624. PubMed ID: 32221399 [TBL] [Abstract][Full Text] [Related]
8. In Vitro and In Vivo Anti- Islam MI; Seo H; Redwan A; Kim S; Lee S; Siddiquee M; Song HY J Microbiol Biotechnol; 2022 Jan; 32(1):46-55. PubMed ID: 34675143 [No Abstract] [Full Text] [Related]
9. Screening of Natural Products and Approved Oncology Drug Libraries for Activity against Clostridioides difficile. Pal R; Seleem MN Sci Rep; 2020 Apr; 10(1):5966. PubMed ID: 32249833 [TBL] [Abstract][Full Text] [Related]
10. Antimicrobial efficacy of Cecropin A (1-7)- Melittin and Lactoferricin (17-30) against multi-drug resistant Salmonella Enteritidis. Gourkhede DP; Bhoomika S; Pathak R; Yadav JP; Nishanth D; Vergis J; Malik SVS; Barbuddhe SB; Rawool DB Microb Pathog; 2020 Oct; 147():104405. PubMed ID: 32707313 [TBL] [Abstract][Full Text] [Related]
11. Evaluation of the antimicrobial activity of ridinilazole and six comparators against Chinese, Japanese and South Korean strains of Clostridioides difficile. Collins DA; Wu Y; Tateda K; Kim HJ; Vickers RJ; Riley TV J Antimicrob Chemother; 2021 Mar; 76(4):967-972. PubMed ID: 33351917 [TBL] [Abstract][Full Text] [Related]
12. Antimicrobial Guanidinylate Polycarbonates Show Oral In Vivo Efficacy Against Clostridioides Difficile. Xue M; Chakraborty S; Gao R; Wang S; Gu M; Shen N; Wei L; Cao C; Sun X; Cai J Adv Healthc Mater; 2024 Jun; 13(14):e2303295. PubMed ID: 38321619 [TBL] [Abstract][Full Text] [Related]
13. The insect peptide coprisin prevents Clostridium difficile-mediated acute inflammation and mucosal damage through selective antimicrobial activity. Kang JK; Hwang JS; Nam HJ; Ahn KJ; Seok H; Kim SK; Yun EY; Pothoulakis C; Lamont JT; Kim H Antimicrob Agents Chemother; 2011 Oct; 55(10):4850-7. PubMed ID: 21807975 [TBL] [Abstract][Full Text] [Related]
14. In vitro and in vivo antibacterial evaluation of cadazolid, a new antibiotic for treatment of Clostridium difficile infections. Locher HH; Seiler P; Chen X; Schroeder S; Pfaff P; Enderlin M; Klenk A; Fournier E; Hubschwerlen C; Ritz D; Kelly CP; Keck W Antimicrob Agents Chemother; 2014; 58(2):892-900. PubMed ID: 24277020 [TBL] [Abstract][Full Text] [Related]
15. Inhibitory effect of Brazilian red propolis on planktonic and biofilm forms of Clostridioides difficile. Costa CL; Azevedo CP; Quesada-Gómez C; Brito GAC; Regueira-Neto MDS; Guedes GMM; Rocha MFG; Sidrim JJC; Cordeiro RA; Carvalho CBM; Castelo-Branco DSCM Anaerobe; 2021 Jun; 69():102322. PubMed ID: 33515722 [TBL] [Abstract][Full Text] [Related]
16. Synergistic effects of antimicrobial peptides and antibiotics against Clostridium difficile. Nuding S; Frasch T; Schaller M; Stange EF; Zabel LT Antimicrob Agents Chemother; 2014 Oct; 58(10):5719-25. PubMed ID: 25022581 [TBL] [Abstract][Full Text] [Related]
17. The membrane as a target for controlling hypervirulent Clostridium difficile infections. Wu X; Cherian PT; Lee RE; Hurdle JG J Antimicrob Chemother; 2013 Apr; 68(4):806-15. PubMed ID: 23264511 [TBL] [Abstract][Full Text] [Related]
18. Effect of antibiotic to induce Clostridioides difficile-susceptibility and infectious strain in a mouse model of Clostridioides difficile infection and recurrence. Castro-Córdova P; Díaz-Yáñez F; Muñoz-Miralles J; Gil F; Paredes-Sabja D Anaerobe; 2020 Apr; 62():102149. PubMed ID: 31940467 [TBL] [Abstract][Full Text] [Related]
19. Structure-antibacterial, antitumor and hemolytic activity relationships of cecropin A-magainin 2 and cecropin A-melittin hybrid peptides. Shin SY; Kang JH; Hahm KS J Pept Res; 1999 Jan; 53(1):82-90. PubMed ID: 10195445 [TBL] [Abstract][Full Text] [Related]
20. Bacteriophage endolysins as a potential weapon to combat Mondal SI; Draper LA; Ross RP; Hill C Gut Microbes; 2020 Nov; 12(1):1813533. PubMed ID: 32985336 [No Abstract] [Full Text] [Related] [Next] [New Search]