These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 34516748)

  • 21. Adaptive cerebellar spiking model embedded in the control loop: context switching and robustness against noise.
    Luque NR; Garrido JA; Carrillo RR; Tolu S; Ros E
    Int J Neural Syst; 2011 Oct; 21(5):385-401. PubMed ID: 21956931
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A distributed cerebellar-inspired learning model for robotic arm control.
    Xiangqian Lin ; Rong Liu
    Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():929-932. PubMed ID: 29060025
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cortico-cerebellar Networks Drive Sensorimotor Learning in Speech.
    Lametti DR; Smith HJ; Freidin PF; Watkins KE
    J Cogn Neurosci; 2018 Apr; 30(4):540-551. PubMed ID: 29211651
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Hysteresis modeling and compensation of a rotary series elastic actuator with nonlinear stiffness.
    Zhou L; Chen W; Chen W; Bai S; Zhao Z; Wang J; Yu H
    Rev Sci Instrum; 2021 Sep; 92(9):095005. PubMed ID: 34598513
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Implications of different classes of sensorimotor disturbance for cerebellar-based motor learning models.
    Haith A; Vijayakumar S
    Biol Cybern; 2009 Jan; 100(1):81-95. PubMed ID: 18941774
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A Neurorobotic Embodiment for Exploring the Dynamical Interactions of a Spiking Cerebellar Model and a Robot Arm During Vision-Based Manipulation Tasks.
    Zahra O; Navarro-Alarcon D; Tolu S
    Int J Neural Syst; 2022 Aug; 32(8):2150028. PubMed ID: 34003083
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cerebellar-inspired adaptive control of a robot eye actuated by pneumatic artificial muscles.
    Lenz A; Anderson SR; Pipe AG; Melhuish C; Dean P; Porrill J
    IEEE Trans Syst Man Cybern B Cybern; 2009 Dec; 39(6):1420-33. PubMed ID: 19369158
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Modelling and Control of a 2-DOF Robot Arm with Elastic Joints for Safe Human-Robot Interaction.
    Tuan HM; Sanfilippo F; Hao NV
    Front Robot AI; 2021; 8():679304. PubMed ID: 34490356
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Individual deformability compensation of soft hydraulic actuators through iterative learning-based neural network.
    Sugiyama T; Kutsuzawa K; Owaki D; Hayashibe M
    Bioinspir Biomim; 2021 Nov; 16(5):. PubMed ID: 34359064
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Computational mechanisms of sensorimotor control.
    Franklin DW; Wolpert DM
    Neuron; 2011 Nov; 72(3):425-42. PubMed ID: 22078503
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Control of a muscle-like soft actuator via a bioinspired approach.
    Cao J; Liang W; Zhu J; Ren Q
    Bioinspir Biomim; 2018 Oct; 13(6):066005. PubMed ID: 30221628
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Computation of inverse functions in a model of cerebellar and reflex pathways allows to control a mobile mechanical segment.
    Ebadzadeh M; Tondu B; Darlot C
    Neuroscience; 2005; 133(1):29-49. PubMed ID: 15893629
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Compact Series Visco-Elastic Joint (SVEJ) for Smooth Torque Control.
    Chiaradia D; Tiseni L; Frisoli A
    IEEE Trans Haptics; 2020; 13(1):226-232. PubMed ID: 32012025
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A meta-analysis on the effectiveness of anthropomorphism in human-robot interaction.
    Roesler E; Manzey D; Onnasch L
    Sci Robot; 2021 Sep; 6(58):eabj5425. PubMed ID: 34516745
    [TBL] [Abstract][Full Text] [Related]  

  • 35. An internal model architecture for novelty detection: implications for cerebellar and collicular roles in sensory processing.
    Anderson SR; Porrill J; Pearson MJ; Pipe AG; Prescott TJ; Dean P
    PLoS One; 2012; 7(9):e44560. PubMed ID: 22957083
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hybrid Parallel Compliance Allows Robots to Operate With Sensorimotor Delays and Low Control Frequencies.
    Ashtiani MS; Aghamaleki Sarvestani A; Badri-Spröwitz A
    Front Robot AI; 2021; 8():645748. PubMed ID: 34312595
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Survey of Robotics Control Based on Learning-Inspired Spiking Neural Networks.
    Bing Z; Meschede C; Röhrbein F; Huang K; Knoll AC
    Front Neurorobot; 2018; 12():35. PubMed ID: 30034334
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A Simple Neural Network for Collision Detection of Collaborative Robots.
    Czubenko M; Kowalczuk Z
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34205579
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Bio-inspired spiking neural network for nonlinear systems control.
    Pérez J; Cabrera JA; Castillo JJ; Velasco JM
    Neural Netw; 2018 Aug; 104():15-25. PubMed ID: 29702424
    [TBL] [Abstract][Full Text] [Related]  

  • 40.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.