These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 34516774)
1. NMR spectroscopy of coin cell batteries with metal casings. Walder BJ; Conradi MS; Borchardt JJ; Merrill LC; Sorte EG; Deichmann EJ; Anderson TM; Alam TM; Harrison KL Sci Adv; 2021 Sep; 7(37):eabg8298. PubMed ID: 34516774 [TBL] [Abstract][Full Text] [Related]
2. Operando NMR characterization of a metal-air battery using a double-compartment cell design. Gauthier M; Nguyen MH; Blondeau L; Foy E; Wong A Solid State Nucl Magn Reson; 2021 Jun; 113():101731. PubMed ID: 33823328 [TBL] [Abstract][Full Text] [Related]
3. A Universal Plug-and-Play Approach to Romanenko K; Avdievich N; Foy E J Am Chem Soc; 2024 Oct; 146(43):29407-29416. PubMed ID: 39415697 [TBL] [Abstract][Full Text] [Related]
4. Enhanced efficiency of solid-state NMR investigations of energy materials using an external automatic tuning/matching (eATM) robot. Pecher O; Halat DM; Lee J; Liu Z; Griffith KJ; Braun M; Grey CP J Magn Reson; 2017 Feb; 275():127-136. PubMed ID: 28064071 [TBL] [Abstract][Full Text] [Related]
5. Operando NMR of NMC811/Graphite Lithium-Ion Batteries: Structure, Dynamics, and Lithium Metal Deposition. Märker K; Xu C; Grey CP J Am Chem Soc; 2020 Oct; 142(41):17447-17456. PubMed ID: 32960049 [TBL] [Abstract][Full Text] [Related]
7. Unraveling Gibbsite Transformation Pathways into LiAl-LDH in Concentrated Lithium Hydroxide. Graham TR; Hu JZ; Zhang X; Dembowski M; Jaegers NR; Wan C; Bowden M; Lipton AS; Felmy AR; Clark SB; Rosso KM; Pearce CI Inorg Chem; 2019 Sep; 58(18):12385-12394. PubMed ID: 31486636 [TBL] [Abstract][Full Text] [Related]
8. Quantitatively analyzing the failure processes of rechargeable Li metal batteries. Xiang Y; Tao M; Zhong G; Liang Z; Zheng G; Huang X; Liu X; Jin Y; Xu N; Armand M; Zhang JG; Xu K; Fu R; Yang Y Sci Adv; 2021 Nov; 7(46):eabj3423. PubMed ID: 34757793 [TBL] [Abstract][Full Text] [Related]
9. In situ solid-state NMR spectroscopy of electrochemical cells: batteries, supercapacitors, and fuel cells. Blanc F; Leskes M; Grey CP Acc Chem Res; 2013 Sep; 46(9):1952-63. PubMed ID: 24041242 [TBL] [Abstract][Full Text] [Related]
10. Automatic Tuning Matching Cycler (ATMC) in situ NMR spectroscopy as a novel approach for real-time investigations of Li- and Na-ion batteries. Pecher O; Bayley PM; Liu H; Liu Z; Trease NM; Grey CP J Magn Reson; 2016 Apr; 265():200-9. PubMed ID: 26938943 [TBL] [Abstract][Full Text] [Related]
11. Nuclear magnetic resonance spectroscopy of rechargeable pouch cell batteries: beating the skin depth by excitation and detection via the casing. Benders S; Mohammadi M; Klug CA; Jerschow A Sci Rep; 2020 Aug; 10(1):13781. PubMed ID: 32792553 [TBL] [Abstract][Full Text] [Related]
12. Development of in situ high resolution NMR: Proof-of-principle for a new (spinning) cylindrical mini-pellet approach applied to a Lithium ion battery. Mohammad I; Cambaz MA; Samoson A; Fichtner M; Witter R Solid State Nucl Magn Reson; 2024 Feb; 129():101914. PubMed ID: 38154437 [TBL] [Abstract][Full Text] [Related]
13. Optimized radio frequency coil for noninvasive magnetic resonance relaxation detection of human finger. Wang J; Lu R; Bazzi L; Jiang X; Chen Y; Wu Z; Yang Q; Ni Z; Yi H; Xiao D J Magn Reson; 2022 Feb; 335():107125. PubMed ID: 34954546 [TBL] [Abstract][Full Text] [Related]
14. Operando nuclear magnetic resonance spectroscopy: Detection of the onset of metallic lithium deposition on graphite at low temperature and fast charge in a full Li-ion battery. Afonso de Araujo L; Sarou-Kanian V; Sicsic D; Deschamps M; Salager E J Magn Reson; 2023 Sep; 354():107527. PubMed ID: 37603989 [TBL] [Abstract][Full Text] [Related]
15. Long-run in operando NMR to investigate the evolution and degradation of battery cells. Kayser SA; Mester A; Mertens A; Jakes P; Eichel RA; Granwehr J Phys Chem Chem Phys; 2018 May; 20(20):13765-13776. PubMed ID: 29740646 [TBL] [Abstract][Full Text] [Related]
16. Understanding the failure process of sulfide-based all-solid-state lithium batteries via operando nuclear magnetic resonance spectroscopy. Liang Z; Xiang Y; Wang K; Zhu J; Jin Y; Wang H; Zheng B; Chen Z; Tao M; Liu X; Wu Y; Fu R; Wang C; Winter M; Yang Y Nat Commun; 2023 Jan; 14(1):259. PubMed ID: 36650152 [TBL] [Abstract][Full Text] [Related]
17. X-ray absorption near-edge structure and nuclear magnetic resonance study of the lithium-sulfur battery and its components. Patel MU; Arčon I; Aquilanti G; Stievano L; Mali G; Dominko R Chemphyschem; 2014 Apr; 15(5):894-904. PubMed ID: 24497200 [TBL] [Abstract][Full Text] [Related]
18. Modified coin cells for in situ Raman spectroelectrochemical measurements of Li(x)V2O5 for lithium rechargeable batteries. Burba CM; Frech R Appl Spectrosc; 2006 May; 60(5):490-3. PubMed ID: 16756699 [TBL] [Abstract][Full Text] [Related]