BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 34516876)

  • 1. Genetic prion disease-related mutation E196K displays a novel amyloid fibril structure revealed by cryo-EM.
    Wang LQ; Zhao K; Yuan HY; Li XN; Dang HB; Ma Y; Wang Q; Wang C; Sun Y; Chen J; Li D; Zhang D; Yin P; Liu C; Liang Y
    Sci Adv; 2021 Sep; 7(37):eabg9676. PubMed ID: 34516876
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cryo-EM structure of an amyloid fibril formed by full-length human prion protein.
    Wang LQ; Zhao K; Yuan HY; Wang Q; Guan Z; Tao J; Li XN; Sun Y; Yi CW; Chen J; Li D; Zhang D; Yin P; Liu C; Liang Y
    Nat Struct Mol Biol; 2020 Jun; 27(6):598-602. PubMed ID: 32514176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Different misfolding mechanisms converge on common conformational changes: human prion protein pathogenic mutants Y218N and E196K.
    Cheng CJ; Daggett V
    Prion; 2014; 8(1):125-35. PubMed ID: 24509603
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Positively Charged Cluster in the N-terminal Disordered Region may Affect Prion Protein Misfolding: Cryo-EM Structure of Hamster PrP(23-144) Fibrils.
    Lee CH; Saw JE; Chen EH; Wang CH; Uchihashi T; Chen RP
    J Mol Biol; 2024 Jun; 436(11):168576. PubMed ID: 38641239
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of three novel mutations (E196K, V203I, E211Q) in the prion protein gene (PRNP) in inherited prion diseases with Creutzfeldt-Jakob disease phenotype.
    Peoc'h K; Manivet P; Beaudry P; Attane F; Besson G; Hannequin D; Delasnerie-Lauprêtre N; Laplanche JL
    Hum Mutat; 2000 May; 15(5):482. PubMed ID: 10790216
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cryo-EM structure of an amyloid fibril formed by full-length human SOD1 reveals its conformational conversion.
    Wang LQ; Ma Y; Yuan HY; Zhao K; Zhang MY; Wang Q; Huang X; Xu WC; Dai B; Chen J; Li D; Zhang D; Wang Z; Zou L; Yin P; Liu C; Liang Y
    Nat Commun; 2022 Jun; 13(1):3491. PubMed ID: 35715417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A simple in vitro assay for assessing the efficacy, mechanisms and kinetics of anti-prion fibril compounds.
    Ladner-Keay CL; Ross L; Perez-Pineiro R; Zhang L; Bjorndahl TC; Cashman N; Wishart DS
    Prion; 2018; 12(5-6):280-300. PubMed ID: 30223704
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Impact of N-glycosylation site variants during human PrP aggregation and fibril nucleation.
    Mishra R; Elgland M; Begum A; Fyrner T; Konradsson P; Nyström S; Hammarström P
    Biochim Biophys Acta Proteins Proteom; 2019 Oct; 1867(10):909-921. PubMed ID: 30935958
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A structural basis for prion strain diversity.
    Manka SW; Wenborn A; Betts J; Joiner S; Saibil HR; Collinge J; Wadsworth JDF
    Nat Chem Biol; 2023 May; 19(5):607-613. PubMed ID: 36646960
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular structures of amyloid and prion fibrils: consensus versus controversy.
    Tycko R; Wickner RB
    Acc Chem Res; 2013 Jul; 46(7):1487-96. PubMed ID: 23294335
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How does domain replacement affect fibril formation of the rabbit/human prion proteins.
    Yan X; Huang JJ; Zhou Z; Chen J; Liang Y
    PLoS One; 2014; 9(11):e113238. PubMed ID: 25401497
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cryo-EM of prion strains from the same genotype of host identifies conformational determinants.
    Hoyt F; Alam P; Artikis E; Schwartz CL; Hughson AG; Race B; Baune C; Raymond GJ; Baron GS; Kraus A; Caughey B
    PLoS Pathog; 2022 Nov; 18(11):e1010947. PubMed ID: 36342968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neutralizing Mutations Significantly Inhibit Amyloid Formation by Human Prion Protein and Decrease Its Cytotoxicity.
    Huang JJ; Li XN; Liu WL; Yuan HY; Gao Y; Wang K; Tang B; Pang DW; Chen J; Liang Y
    J Mol Biol; 2020 Feb; 432(4):828-844. PubMed ID: 31821812
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dissection of conformational conversion events during prion amyloid fibril formation using hydrogen exchange and mass spectrometry.
    Singh J; Udgaonkar JB
    J Mol Biol; 2013 Sep; 425(18):3510-21. PubMed ID: 23811055
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hereditary Creutzfeldt-Jakob disease and fatal familial insomnia.
    Gambetti P; Parchi P; Chen SG
    Clin Lab Med; 2003 Mar; 23(1):43-64. PubMed ID: 12733424
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of N-terminal familial mutations in prion protein fibrillization and prion amyloid propagation in vitro.
    Jones EM; Surewicz K; Surewicz WK
    J Biol Chem; 2006 Mar; 281(12):8190-6. PubMed ID: 16443601
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cryo-EM Structure of the Full-length hnRNPA1 Amyloid Fibril.
    Sharma K; Banerjee S; Savran D; Rajes C; Wiese S; Girdhar A; Schwierz N; Lee C; Shorter J; Schmidt M; Guo L; Fändrich M
    J Mol Biol; 2023 Sep; 435(18):168211. PubMed ID: 37481159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A valine-to-lysine substitution at position 210 induces structural conversion of prion protein into a β-sheet rich oligomer.
    Kakuda K; Yamaguchi KI; Kuwata K; Honda R
    Biochem Biophys Res Commun; 2018 Nov; 506(1):81-86. PubMed ID: 30336980
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conformational properties of prion strains can be transmitted to recombinant prion protein fibrils in real-time quaking-induced conversion.
    Sano K; Atarashi R; Ishibashi D; Nakagaki T; Satoh K; Nishida N
    J Virol; 2014 Oct; 88(20):11791-801. PubMed ID: 25078700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Assemblages of prion fragments: novel model systems for understanding amyloid toxicity.
    Satheeshkumar KS; Murali J; Jayakumar R
    J Struct Biol; 2004 Nov; 148(2):176-93. PubMed ID: 15477098
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.