These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 34517114)

  • 1. Numerical study of the impact of glottis properties on the airflow field in the human trachea using V-LES.
    Chen W; Wang L; Chen L; Ge H; Cui X
    Respir Physiol Neurobiol; 2022 Jan; 295():103784. PubMed ID: 34517114
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Numerical study of the airflow structures in an idealized mouth-throat under light and heavy breathing intensities using large eddy simulation.
    Cui X; Wu W; Gutheil E
    Respir Physiol Neurobiol; 2018 Jan; 248():1-9. PubMed ID: 29128524
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of glottic aperture on the tracheal flow.
    Brouns M; Verbanck S; Lacor C
    J Biomech; 2007; 40(1):165-72. PubMed ID: 16403504
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scale resolving simulations of the effect of glottis motion and the laryngeal jet on flow dynamics during respiration.
    Emmerling J; Vahaji S; Morton DAV; Fletcher DF; Inthavong K
    Comput Methods Programs Biomed; 2024 Apr; 247():108064. PubMed ID: 38382308
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Large eddy simulation of the unsteady flow-field in an idealized human mouth-throat configuration.
    Cui XG; Gutheil E
    J Biomech; 2011 Nov; 44(16):2768-74. PubMed ID: 21937045
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of airflow field in the upper airway under unsteady respiration pattern using large eddy simulation method.
    Cui X; Wu W; Ge H
    Respir Physiol Neurobiol; 2020 Aug; 279():103468. PubMed ID: 32505518
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Large eddy simulation of the flow pattern in an idealized mouth-throat under unsteady inspiration flow conditions.
    Cui X; Gutheil E
    Respir Physiol Neurobiol; 2018 Jun; 252-253():38-46. PubMed ID: 29518555
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Numerical study of dynamic glottis and tidal breathing on respiratory sounds in a human upper airway model.
    Xi J; Wang Z; Talaat K; Glide-Hurst C; Dong H
    Sleep Breath; 2018 May; 22(2):463-479. PubMed ID: 29101633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Computational simulations of airflow in an in vitro model of the pediatric upper airways.
    Allen GM; Shortall BP; Gemci T; Corcoran TE; Chigier NA
    J Biomech Eng; 2004 Oct; 126(5):604-13. PubMed ID: 15648813
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Airway area by acoustic reflections measured at the mouth.
    Fredberg JJ; Wohl ME; Glass GM; Dorkin HL
    J Appl Physiol Respir Environ Exerc Physiol; 1980 May; 48(5):749-58. PubMed ID: 7451282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristics of glottis-induced turbulence in oscillatory flow: an empirical investigation.
    Choi Y; Wroblewski DE
    J Biomech Eng; 1998 Apr; 120(2):217-26. PubMed ID: 10412383
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glottis motion effects on the particle transport and deposition in a subject-specific mouth-to-trachea model: A CFPD study.
    Zhao J; Feng Y; Fromen CA
    Comput Biol Med; 2020 Jan; 116():103532. PubMed ID: 31751812
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large Eddy Simulation and Reynolds-Averaged Navier-Stokes modeling of flow in a realistic pharyngeal airway model: an investigation of obstructive sleep apnea.
    Mihaescu M; Murugappan S; Kalra M; Khosla S; Gutmark E
    J Biomech; 2008 Jul; 41(10):2279-88. PubMed ID: 18514205
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Flow separation in a computational oscillating vocal fold model.
    Alipour F; Scherer RC
    J Acoust Soc Am; 2004 Sep; 116(3):1710-9. PubMed ID: 15478438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in aerodynamics during vocal cord dysfunction.
    Frank-Ito DO; Schulz K; Vess G; Witsell DL
    Comput Biol Med; 2015 Feb; 57():116-22. PubMed ID: 25546469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Investigation of inhalation and exhalation flow pattern in a realistic human upper airway model by PIV experiments and CFD simulations.
    Xu X; Wu J; Weng W; Fu M
    Biomech Model Mechanobiol; 2020 Oct; 19(5):1679-1695. PubMed ID: 32026145
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Numerical investigation of inspiratory airflow in a realistic model of the human tracheobronchial airways and a comparison with experimental results.
    Elcner J; Lizal F; Jedelsky J; Jicha M; Chovancova M
    Biomech Model Mechanobiol; 2016 Apr; 15(2):447-69. PubMed ID: 26163996
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Numerical simulation on cycle change form of the pressure and wall shear in human upper respiratory tract].
    Li F; Xu X; Sun D; Zhao X; Tan S
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2013 Apr; 30(2):409-14. PubMed ID: 23858771
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro-in silico correlation of three-dimensional turbulent flows in an idealized mouth-throat model.
    Nof E; Bhardwaj S; Koullapis P; Bessler R; Kassinos S; Sznitman J
    PLoS Comput Biol; 2023 Mar; 19(3):e1010537. PubMed ID: 36952557
    [TBL] [Abstract][Full Text] [Related]  

  • 20. 3D phase contrast MRI in models of human airways: Validation of computational fluid dynamics simulations of steady inspiratory flow.
    Collier GJ; Kim M; Chung Y; Wild JM
    J Magn Reson Imaging; 2018 Nov; 48(5):1400-1409. PubMed ID: 29630757
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.