These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 34517224)

  • 1. Reduced pH increases mortality and genotoxicity in an Arctic coastal copepod, Acartia longiremis.
    Halsband C; Dix MF; Sperre KH; Reinardy HC
    Aquat Toxicol; 2021 Oct; 239():105961. PubMed ID: 34517224
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Genotoxic Response and Mortality in 3 Marine Copepods Exposed to Waterborne Copper.
    Sahlmann A; Lode T; Heuschele J; Borgå K; Titelman J; Hylland K
    Environ Toxicol Chem; 2019 Oct; 38(10):2224-2232. PubMed ID: 31343775
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CO
    Wei H; Bai Z; Xie D; Chen Y; Wang M
    Mar Pollut Bull; 2021 Dec; 173(Pt B):113145. PubMed ID: 34800761
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Maternal effects may act as an adaptation mechanism for copepods facing pH and temperature changes.
    Vehmaa A; Brutemark A; Engström-Öst J
    PLoS One; 2012; 7(10):e48538. PubMed ID: 23119052
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Vertical and geographic distribution of copepod communities at late summer in the Amerasian Basin, Arctic Ocean.
    Wang YG; Tseng LC; Lin M; Hwang JS
    PLoS One; 2019; 14(7):e0219319. PubMed ID: 31295285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of concentration and size of suspended particles on the ingestion, reproduction and mortality rates of the copepod, Acartia tonsa.
    Sew G; Calbet A; Drillet G; Todd PA
    Mar Environ Res; 2018 Sep; 140():251-264. PubMed ID: 30042061
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Aging of microplastics promotes their ingestion by marine zooplankton.
    Vroom RJE; Koelmans AA; Besseling E; Halsband C
    Environ Pollut; 2017 Dec; 231(Pt 1):987-996. PubMed ID: 28898955
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toxicity of nickel in the marine calanoid copepod Acartia tonsa: Nickel chloride versus nanoparticles.
    Zhou C; Vitiello V; Casals E; Puntes VF; Iamunno F; Pellegrini D; Changwen W; Benvenuto G; Buttino I
    Aquat Toxicol; 2016 Jan; 170():1-12. PubMed ID: 26562184
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased tolerance to oil exposure by the cosmopolitan marine copepod Acartia tonsa.
    Krause KE; Dinh KV; Nielsen TG
    Sci Total Environ; 2017 Dec; 607-608():87-94. PubMed ID: 28688259
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of environmental conditions on the toxicokinetics of cadmium in the marine copepod Acartia tonsa.
    Pavlaki MD; Morgado RG; van Gestel CAM; Calado R; Soares AMVM; Loureiro S
    Ecotoxicol Environ Saf; 2017 Nov; 145():142-149. PubMed ID: 28732297
    [TBL] [Abstract][Full Text] [Related]  

  • 11. High and diurnally fluctuating carbon dioxide exposure produces lower mercury toxicity in a marine copepod.
    Cheng L; Bai Z; Wei H; Chen Y; Wang M
    Mar Pollut Bull; 2023 Jul; 192():115016. PubMed ID: 37182245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Ecological effects of scrubber water discharge on coastal plankton: Potential synergistic effects of contaminants reduce survival and feeding of the copepod Acartia tonsa.
    Koski M; Stedmon C; Trapp S
    Mar Environ Res; 2017 Aug; 129():374-385. PubMed ID: 28687429
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Antagonistic interplay between pH and food resources affects copepod traits and performance in a year-round upwelling system.
    Aguilera VM; Vargas CA; Dam HG
    Sci Rep; 2020 Jan; 10(1):62. PubMed ID: 31919456
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Response of copepods to elevated pCO2 and environmental copper as co-stressors--a multigenerational study.
    Fitzer SC; Caldwell GS; Clare AS; Upstill-Goddard RC; Bentley MG
    PLoS One; 2013; 8(8):e71257. PubMed ID: 23951121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diel Fluctuation Superimposed on Steady High
    Wei H; Qian J; Xie ZX; Lin L; Wang DZ; Wang MH
    Environ Sci Technol; 2022 Sep; 56(18):13179-13188. PubMed ID: 36044019
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microplastics do not increase bioaccumulation of petroleum hydrocarbons in Arctic zooplankton but trigger feeding suppression under co-exposure conditions.
    Almeda R; Rodriguez-Torres R; Rist S; Winding MHS; Stief P; Hansen BH; Nielsen TG
    Sci Total Environ; 2021 Jan; 751():141264. PubMed ID: 32871308
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of airgun discharges used in seismic surveys on development and mortality in nauplii of the copepod Acartia tonsa.
    Vereide EH; Mihaljevic M; Browman HI; Fields DM; Agersted MD; Titelman J; de Jong K
    Environ Pollut; 2023 Jun; 327():121469. PubMed ID: 36963455
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Exposure to leachates from post-consumer plastic and recycled rubber causes stress responses and mortality in a copepod Limnocalanus macrurus.
    Lehtiniemi M; Hartikainen S; Turja R; Lehtonen KK; Vepsäläinen J; Peräniemi S; Leskinen J; Setälä O
    Mar Pollut Bull; 2021 Dec; 173(Pt B):113103. PubMed ID: 34741928
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Seawater pH Predicted for the Year 2100 Affects the Metabolic Response to Feeding in Copepodites of the Arctic Copepod Calanus glacialis.
    Thor P; Bailey A; Halsband C; Guscelli E; Gorokhova E; Fransson A
    PLoS One; 2016; 11(12):e0168735. PubMed ID: 27992579
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ecotoxicological investigation of the effect of accumulation of PAH and possible impact of dispersant in resting high arctic copepod Calanus hyperboreus.
    Nørregaard RD; Gustavson K; Møller EF; Strand J; Tairova Z; Mosbech A
    Aquat Toxicol; 2015 Oct; 167():1-11. PubMed ID: 26253790
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.